【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知bcosC+ bsinC﹣a﹣c=0,則角B= .
【答案】
【解析】證明:在△ABC中,∵bcosC+ bsinC﹣a﹣c=0,
∴利用正弦定理化簡得:sinBcosC+ sinBsinC﹣sinA﹣sinC=0,
即sinBcosC+ sinBsinC=sinA+sinC=sin(B+C)+sinC=sinBcosC+cosBsinC+sinC=sinBcosC+sinC(cosB+1),
∴ sinB=cosB+1,即sin(B﹣ )= ,
∵0<B<π,
∴﹣ <B﹣ < ,
∴B﹣ = ,即B= .
所以答案是: .
【考點(diǎn)精析】本題主要考查了正弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握正弦定理:才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若的圖像在處的切線與軸平行,求的極值;
(2)若函數(shù)在內(nèi)單調(diào)遞增,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓x2+y2-4ax+2ay+20a-20=0.
(1)求證:對(duì)任意實(shí)數(shù)a,該圓恒過一定點(diǎn);
(2)若該圓與圓x2+y2=4相切,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有4名學(xué)生參加演講比賽,有兩個(gè)題目可供選擇,組委會(huì)決定讓選手通過擲一枚質(zhì)地均勻的骰子選擇演講的題目,規(guī)則如下:選手?jǐn)S出能被3整除的數(shù)則選擇題目,擲出其他的數(shù)則選擇題目.
(1)求這4個(gè)人中恰好有1個(gè)人選擇題目的概率;
(2)用分別表示這4個(gè)人中選擇題目的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,從氣球A上測得正前方的河流的兩岸B,C的俯角分別為75°,30°,此時(shí)氣球的高是60m,則河流的寬度BC等于( )
A.m
B.m
C.m
D.m
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于函數(shù)(),
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若在區(qū)間內(nèi)有且只有一個(gè)極值點(diǎn),試求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點(diǎn)M、N兩點(diǎn).
(1)求k的取值范圍;
(2)若 =12,其中O為坐標(biāo)原點(diǎn),求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的首項(xiàng)為a,公差為b,且不等式ax2﹣3x+2>0的解集為(﹣∞,1)∪(b,+∞)
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)數(shù)列{bn}滿足= ,求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com