13.下列各進制數(shù)中,最小的是(  )
A.85(3)B.210(6)C.1 000(4)D.111 111(2)

分析 利用累加權(quán)重法,將四個答案中的數(shù)均轉(zhuǎn)化為十進制的數(shù),進而比較可得答案.

解答 解:85(3)=8×31+5×30=29
210(6)=2×36+1×6=78
1000(4)=43=64
111111(2)=26-1=63
故選:A.

點評 本題考查的知識點是同進制之間的轉(zhuǎn)換,其中其它進制轉(zhuǎn)為十進制方法均為累加數(shù)字×權(quán)重,十進制轉(zhuǎn)換為其它進制均采用除K求余法,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),其離心率$e=\frac{{\sqrt{3}}}{2}$,且過點$(\sqrt{3},\frac{1}{2})$.
(1)求橢圓C的方程;
(2)若直線y=k(x-1)與橢圓C交于R,S兩點.問是否在x軸上存在一點T,使當k變動時,總有∠OTS=∠OTR?若存在請求出點T,若不存在請說明理由!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)物體以速度v(t)=3t2+t(單位v:m/s,t:s)做直線運動,則它在0~4s內(nèi)所走的路程s為( 。
A.70 mB.72 mC.75 mD.80 m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知直線l:y=x-1與曲線y=ln(x-a)相切,則實數(shù)a=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=kx+b,且f(f(x))=4x-3,求k和b及f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖是求從1到100中所有自然數(shù)的平方和而設(shè)計的程序框圖,將空白處補充完整,并指明它是循環(huán)結(jié)構(gòu)中的哪一種類型,且畫出它的另一種結(jié)構(gòu)框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知實數(shù)a=ln(lnπ),b=lnπ,c=2lnπ,則a,b,c的大小關(guān)系為( 。
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知點F是拋物線C:y2=2px(p>0)的焦點,若點M(x0,1)在C上,且|MF|=$\frac{{5{x_0}}}{4}$.
(1)求p的值;
(2)若直線l經(jīng)過點Q(3,-1)且與C交于A,B(異于M)兩點,證明:直線AM與直線BM的斜率之積為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知全集U=R,集合A={x|0<2x+4<10},B={x|x<-4,或x>2},C={x|x2-4ax+3a2<0,a<0},
(1)求A∪B;
(2)若∁U(A∪B)⊆C,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案