分析 (1)以A為坐標(biāo)原點(diǎn)O,分別以AB,AC,AA1所在直線為x軸、y軸、z軸,建立空間直角坐標(biāo)系O-xyz,利用向量法能求出直線PC與平面A1BC所成的角的正弦值.
(2)求出平面PA1C的法向量和平面PA1C的法向量,利用向量法能求出λ的值.
解答 解:(1)以A為坐標(biāo)原點(diǎn)O,分別以AB,AC,AA1所在直線為x軸、y軸、z軸,
建立空間直角坐標(biāo)系O-xyz.
∵AB=AC=1,AA1=2,則A(0,0,0),B(1,0,0),C(0,1,0),
A1(0,0,2),B1(1,0,2),P(1,0,2λ).…(1分)
由$λ=\frac{1}{3}$得,$\overrightarrow{CP}=(1,-1,\frac{2}{3})$,$\overrightarrow{{A_1}B}=(1,0,-2)$,$\overrightarrow{{A_1}C}=(0,1,-2)$,
設(shè)平面A1BC的法向量為$\overrightarrow{n}$=(x1,y1,z1),由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{A}_{1}B}=0}\\{\overrightarrow{n}•\overrightarrow{{A}_{1}C}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x_1}-2{z_1}=0\\{y_1}-2{z_1}=0.\end{array}\right.$
取z1=1,則x1=y1=2,從而平面A1BC的一個(gè)法向量為$\overrightarrow{n}$=(2,2,1).…(3分)
設(shè)直線PC與平面A1BC所成的角為θ,
則sinθ=|cos<$\overrightarrow{CP},\overrightarrow{n}$>|=$\frac{|\overrightarrow{CP}•\overrightarrow{n}|}{|\overrightarrow{CP}|•|\overrightarrow{n}|}$=$\frac{\sqrt{22}}{33}$,
∴直線PC與平面A1BC所成的角的正弦值為$\frac{{\sqrt{22}}}{33}$.…(5分)
(2)設(shè)平面PA1C的法向量為$\overrightarrow{m}$=(x2,y2,z2),$\overrightarrow{{A_1}P}=(1,0,\;2λ-2)$,
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{{A}_{1}C}=0}\\{\overrightarrow{m}•\overrightarrow{{A}_{1}P}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{y_2}-2{z_2}=0\\{x_2}+(2λ-2){z_2}=0.\end{array}\right.$
取z2=1,則x2=2-2λ,y2=2,平面PA1C的法向量為$\overrightarrow{m}$=(2-2λ,2,1).…(7分)
則cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{9-4λ}{3\sqrt{4{λ}^{2}-8λ+9}}$,
又∵二面角P-A1C-B的正弦值為$\frac{2}{3}$,∴$\frac{9-4λ}{{3\sqrt{4{λ^2}-8λ+9}}}=\frac{{\sqrt{5}}}{3}$,…(9分)
化簡(jiǎn)得λ2+8λ-9=0,解得λ=1或λ=-9(舍去),
故λ的值為1. …(10分)
點(diǎn)評(píng) 本題考查線面角的正弦值的求法,考查實(shí)數(shù)值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x3 | B. | y=cosx | C. | y=ln$\frac{1-x}{1+x}$ | D. | y=ex |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 60° | C. | 90° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com