分析 (1)y=f(x)+x=x|a-x|+x=$\left\{\begin{array}{l}{{x}^{2}+(1-a)x\\;\\;x≥a}\\{-{x}^{2}+(1+a)x\\;\\;x<a}\end{array}\right.$,要使函數(shù)y=f(x)+x在R上是增函數(shù),只需$\left\{\begin{array}{l}{-\frac{1-a}{2}≤a}\\{\frac{-(1+a)}{2•(-1)}≥a}\end{array}\right.$即可,
(2)由題意得對任意的實數(shù)x∈[1,2],f(x)<1恒成立即可,
(3)當(dāng)a≥2時,$\frac{a}{2}≥1$,f(x)=$\left\{\begin{array}{l}{x(a-x)\\;x<a}\\{x(x-a),x≥a}\end{array}\right.$,根據(jù)二次函數(shù)的性質(zhì),分段求出值域即可.
解答 解:(1)y=f(x)+x=x|a-x|+x=$\left\{\begin{array}{l}{{x}^{2}+(1-a)x\\;\\;x≥a}\\{-{x}^{2}+(1+a)x\\;\\;x<a}\end{array}\right.$
由函數(shù)y=f(x)+x在R上是增函數(shù),
則$\left\{\begin{array}{l}{-\frac{1-a}{2}≤a}\\{\frac{-(1+a)}{2•(-1)}≥a}\end{array}\right.$即-1≤a≤1,
則a范圍為-1≤a≤1;…..(5分)
(2)由題意得對任意的實數(shù)x∈[1,2],f(x)<1恒成立,
即x|x-a|<1,當(dāng)x∈[1,2]恒成立,即|a-x|<$\frac{1}{x}$,-$\frac{1}{x}$<x-a<$\frac{1}{x}$,
即為x-$\frac{1}{x}<a<x+\frac{1}{x}$,
故只要x-$\frac{1}{x}<a$且a$<\frac{1}{x}+x$在x∈[1,2]上恒成立即可,
即有$\left\{\begin{array}{l}{a>(x-\frac{1}{x})_{max}}\\{a<(x+\frac{1}{x})_{min}}\end{array}\right.$即$\frac{3}{2}<a<2$;….(10分)
(3)當(dāng)a≥2時,$\frac{a}{2}≥1$,f(x)=$\left\{\begin{array}{l}{x(a-x)\\;x<a}\\{x(x-a),x≥a}\end{array}\right.$
(Ⅰ)當(dāng)$\frac{a}{2}>4$即a>8時,f(x)在[2,4]上遞增,f(x)min=f(2)=2a-4,f(x)max=f(4)=4a-16,∴值域為[2a-4,4a-16]
(Ⅱ)當(dāng)2≤$\frac{a}{2}$≤4,及4≤a≤8時,f(x)=f($\frac{a}{2}$)=$\frac{{a}^{2}}{4}$,f(2)-f(4)=12-2a
若4≤a<6,值域為[4a-16,$\frac{{a}^{2}}{4}$];若6≤a≤8,則值域為[2a-4,$\frac{{a}^{2}}{4}$];
(Ⅲ)當(dāng)1$≤\frac{a}{2}<2$,即2≤a<4時f(x)min=0,且f(2)-f(4)=6-20,
若2≤a<$\frac{10}{3}$,則值域為[0,16-4a].,若$\frac{10}{3}≤a<4$,則值域為[0,2a-4]…..(15分)
點(diǎn)評 本題考查了分段函數(shù)的值域,及恒成立的轉(zhuǎn)化,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{2}$ | C. | 4 | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x2-2x+1 | B. | f(x)=x2-1 | C. | f(x)=2x | D. | f(x)=2x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com