分析 (1)利用函數(shù)單調性的定義,建立不等式組,即可求實數(shù)a的取值范圍;
(2)求導數(shù),確定函數(shù)的單調性,求出-$\frac{16}{3}$≤g(x)≤$\frac{10}{3}$,即可得出結論.
解答 解:(1)由題意,$\left\{\begin{array}{l}{2-a>0}\\{a+2>1}\\{(2-a)×7-12≤a+2}\end{array}\right.$,∴0≤a<2;
(2)∵g(x)=-$\frac{1}{3}{x^3}+\frac{1}{2}{x^2}$+2x,∴g′(x)=-x2+x+2,
令g′(x)<0,可得x<-1或x>2,函數(shù)單調遞減;g′(x)>0,可得-1<x<2,函數(shù)單調遞增,
∴函數(shù)g(x)在[1,4]上的最大值為g(2)=$\frac{10}{3}$,
∵g(4)-g(1)=-7.5<0,∴g(4)<g(1),
∴函數(shù)g(x)在[1,4]上的最小值為g(4)=-$\frac{16}{3}$,
∴-$\frac{16}{3}$≤g(x)≤$\frac{10}{3}$,
∴f(-$\frac{16}{3}$)≤f(g(x))≤f($\frac{10}{3}$).
點評 本題考查函數(shù)的單調性,考查導數(shù)知識的運用,考查函數(shù)的最值,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | -2011 | D. | 2011 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | π | C. | -2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{2\sqrt{6}}}{3}$ | B. | $\frac{{4\sqrt{6}}}{3}$ | C. | $\sqrt{6}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com