對于數(shù)列A:a1,a2,a3(ai∈N,i=1,2,3),定義“T變換”:T將數(shù)列A變換成數(shù)列B:b1,b2,b3,其中bi=|ai-ai+1|(i=1,2),且b3=|a3-a1|.這種“T變換”記作B=T(A).繼續(xù)對數(shù)列B進行“T變換”,得到數(shù)列C:c1,c2,c3,依此類推,當(dāng)?shù)玫降臄?shù)列各項均為0時變換結(jié)束.
(Ⅰ)試問A:2,6,4經(jīng)過不斷的“T變換”能否結(jié)束?若能,請依次寫出經(jīng)過“T變換”得到的各數(shù)列;若不能,說明理由;
(Ⅱ)設(shè)A:a1,a2,a3,B=T(A).若B:b,2,a(a≥b),且B的各項之和為2012.
(。┣骯,b;
(ⅱ)若數(shù)列B再經(jīng)過k次“T變換”得到的數(shù)列各項之和最小,求k的最小值,并說明理由.

(本小題滿分13分)
(Ⅰ)解:數(shù)列A:2,6,4不能結(jié)束,各數(shù)列依次為4,2,2;2,0,2;2,2,0;0,2,2;2,0,2;….
以下重復(fù)出現(xiàn),所以不會出現(xiàn)所有項均為0的情形. …(3分)
(Ⅱ)解:(。┮驗锽的各項之和為2012,且a≥b,所以a為B的最大項,
所以|a1-a3|最大,即a1≥a2≥a3,或a3≥a2≥a1.…(5分)
當(dāng)a1≥a2≥a3時,可得
由a+b+2=2012,得2(a1-a3)=2012,即a=1006,故b=1004.…(7分)
當(dāng)a3≥a2≥a1時,同理可得 a=1006,b=1004.…(8分)
(ⅱ)方法一:由B:b,2,b+2,則B經(jīng)過6次“T變換”得到的數(shù)列分別為:b-2,b,2;2,b-2,b-4;b-4,2,b-6;b-6,b-8,2;2,b-10,b-8;b-12,2,b-10.
由此可見,經(jīng)過6次“T變換”后得到的數(shù)列也是形如“b,2,b+2”的數(shù)列,與數(shù)列B“結(jié)構(gòu)”完全相同,但最大項減少12.
因為1006=12×83+10,
所以,數(shù)列B經(jīng)過6×83=498次“T變換”后得到的數(shù)列為8,2,10.
接下來經(jīng)過“T變換”后得到的數(shù)列分別為:6,8,2;2,6,4;4,2,2;2,0,2;2,2,0;0,2,2;2,0,2,…
從以上分析可知,以后重復(fù)出現(xiàn),所以數(shù)列各項和不會更。
所以經(jīng)過498+4=502次“T變換”得到的數(shù)列各項和最小,k的最小值為502.…(13分)
方法二:若一個數(shù)列有三項,且最小項為2,較大兩項相差2,則稱此數(shù)列與數(shù)列B“結(jié)構(gòu)相同”.
若數(shù)列B的三項為x+2,x,2(x≥2),則無論其順序如何,經(jīng)過“T變換”得到的數(shù)列的三項為x,x-2,2(不考慮順序).
所以與B結(jié)構(gòu)相同的數(shù)列經(jīng)過“T變換”得到的數(shù)列也與B結(jié)構(gòu)相同,除2外其余各項減少2,各項和減少4.
因此,數(shù)列B:1004,2,1006經(jīng)過502次“T變換”一定得到各項為2,0,2(不考慮順序)的數(shù)列.
通過列舉,不難發(fā)現(xiàn)各項為0,2,2的數(shù)列,無論順序如何,經(jīng)過“T變換”得到的數(shù)列會重復(fù)出現(xiàn),各項和不再減少.
所以,至少通過502次“T變換”,得到的數(shù)列各項和最小,故k的最小值為502.…(13分)
分析:(Ⅰ)首先要弄清“T變換”的特點,其次要嘗試著去算幾次變換的結(jié)果,看一下有什么規(guī)律,顯然只有當(dāng)變換到數(shù)列的三項都相等時,再經(jīng)過一次“T變換”才能得到數(shù)列的各項均為零,否則“T變換”不可能結(jié)束.(Ⅱ)中(i)的解答要通過已知條件得出a是B數(shù)列的最大項,從而去掉絕對值符號得到數(shù)列A是單調(diào)數(shù)列,得到答案.(ii)的解答要抓住B經(jīng)過6次“T變換”后得到的數(shù)列也是形如“b,2,b+2”的數(shù)列,與數(shù)列B“結(jié)構(gòu)”完全相同,且最大項減少12,從而數(shù)列和減少24,經(jīng)過6×83+4=502次變換后使得各項的和最小,于是k的最小值為502.
點評:此題需要較強的邏輯思維能力及計算能力,通過計算發(fā)現(xiàn)和歸納出其規(guī)律,進而得出答案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)列A:a1,a2,…,an,若滿足ai∈{0,1}(i=1,2,3,…,n),則稱數(shù)列A為“0-1數(shù)列”.定義變換T,T將“0-1數(shù)列”A中原有的每個1都變成0,1,原有的每個0都變成1,0.例如A:1,0,1,則T(A):0,1,1,0,0,1.設(shè)A0是“0-1數(shù)列”,令A(yù)k=T(Ak-1),k=1,2,3,…
(1)若數(shù)列A2:1,0,0,1,0,1,1,0,1,0,0,1.則數(shù)列A0
1,0,1
1,0,1
;
(2)若A0為0,1,記數(shù)列Ak中連續(xù)兩項都是0的數(shù)對個數(shù)為lk,k=1,2,3,…,則l2n關(guān)于n的表達(dá)式.是
l2n=
1
3
(4n-1)
l2n=
1
3
(4n-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)一模)對于數(shù)列A:a1,a2,a3(ai∈N,i=1,2,3),定義“T變換”:T將數(shù)列A變換成數(shù)列B:b1,b2,b3,其中bi=|ai-ai+1|(i=1,2),且b3=|a3-a1|.這種“T變換”記作B=T(A).繼續(xù)對數(shù)列B進行“T變換”,得到數(shù)列C:c1,c2,c3,依此類推,當(dāng)?shù)玫降臄?shù)列各項均為0時變換結(jié)束.
(Ⅰ)試問A:2,6,4經(jīng)過不斷的“T變換”能否結(jié)束?若能,請依次寫出經(jīng)過“T變換”得到的各數(shù)列;若不能,說明理由;
(Ⅱ)設(shè)A:a1,a2,a3,B=T(A).若B:b,2,a(a≥b),且B的各項之和為2012.
(ⅰ)求a,b;
(ⅱ)若數(shù)列B再經(jīng)過k次“T變換”得到的數(shù)列各項之和最小,求k的最小值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京市西城區(qū)2012屆高三4月第一次模擬考試數(shù)學(xué)文科試題 題型:044

對于數(shù)列A:a1,a2,a3(ai∈N,i=1,2,3),定義“T變換”:T將數(shù)列A變換成數(shù)列B:b1,b2,b3,其中bi=|ai-ai+1|(i=1,2),且b3=|a3-a1|.這種“T變換”記作B=T(A).繼續(xù)對數(shù)列B進行“T變換”,得到數(shù)列C:c1,c2,c3,依此類推,當(dāng)?shù)玫降臄?shù)列各項均為0時變換結(jié)束.

(Ⅰ)試問A:2,6,4經(jīng)過不斷的“T變換”能否結(jié)束?若能,請依次寫出經(jīng)過“T變換”得到的各數(shù)列;若不能,說明理由;

(Ⅱ)設(shè)A:a1,a2,a3,B=T(A).若B:b,2,a(a≥b),且B的各項之和為2012.

(ⅰ)求a,b;

(ⅱ)若數(shù)列B再經(jīng)過k次“T變換”得到的數(shù)列各項之和最小,求k的最小值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年北京市西城區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

對于數(shù)列A:a1,a2,a3(ai∈N,i=1,2,3),定義“T變換”:T將數(shù)列A變換成數(shù)列B:b1,b2,b3,其中bi=|ai-ai+1|(i=1,2),且b3=|a3-a1|.這種“T變換”記作B=T(A).繼續(xù)對數(shù)列B進行“T變換”,得到數(shù)列C:c1,c2,c3,依此類推,當(dāng)?shù)玫降臄?shù)列各項均為0時變換結(jié)束.
(Ⅰ)試問A:2,6,4經(jīng)過不斷的“T變換”能否結(jié)束?若能,請依次寫出經(jīng)過“T變換”得到的各數(shù)列;若不能,說明理由;
(Ⅱ)設(shè)A:a1,a2,a3,B=T(A).若B:b,2,a(a≥b),且B的各項之和為2012.
(。┣骯,b;
(ⅱ)若數(shù)列B再經(jīng)過k次“T變換”得到的數(shù)列各項之和最小,求k的最小值,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案