12.已知函數(shù)f(x)=ln(x+1)-x
(1)若k∈z,且f(x-1)+x>k(1-$\frac{3}{x}$)對任意x>1恒成立,求k的最大值.
(2)對于在(0,1)中的任意一個常數(shù)a,是否存在正數(shù)x0,使得ef(x0<1-$\frac{a}{2}$x02成立.

分析 (1)求出xlnx+x-kx+3k>0,令g(x)=xlnx+x-kx+3k,根據(jù)函數(shù)的單調(diào)性求出函數(shù)的最小值,從而求出k的最大值即可;
(2)假設(shè)存在這樣的x0滿足題意,得到$\frac{a}{2}$${{x}_{0}}^{2}$+$\frac{{x}_{0}+1}{{e}^{{x}_{0}}}$-1<0,令h(x)=$\frac{a}{2}$x2+$\frac{x+1}{{e}^{x}}$-1,根據(jù)函數(shù)的單調(diào)性求出h(x)的最小值,從而求出滿足條件的x的值.

解答 解:(1)∵f(x-1)+x>k(1-$\frac{3}{x}$),
∴l(xiāng)nx-(x-1)+x>k(1-$\frac{3}{x}$),
∴l(xiāng)nx+1>k(1-$\frac{3}{x}$),即xlnx+x-kx+3k>0,
令g(x)=xlnx+x-kx+3k,則g′(x)=lnx+1+1-k=lnx+2-k,
若k≤2,∵x>1,∴l(xiāng)nx>0,g′(x)>0恒成立,
即g(x)在(1,+∞)上遞增;
∴g(1)=1+2k≥0,解得,k≥-$\frac{1}{2}$;
故-$\frac{1}{2}$≤k≤2,故k的最大值為2;
若k>2,由lnx+2-k>0,解得x>ek-2,
故g(x)在(1,ek-2)上單調(diào)遞減,在(ek-2,+∞)上單調(diào)遞增;
∴gmin(x)=g(ek-2)=3k-ek-2
令h(k)=3k-ek-2,h′(k)=3-ek-2
∴h(k)在(1,2+ln3)上單調(diào)遞增,在(2+ln3,+∞)上單調(diào)遞減;
∵h(2+ln3)=3+3ln3>0,h(4)=12-e2>0,h(5)=15-e3<0;
∴k的最大取值為4,
綜上所述,k的最大值為4.
(2)假設(shè)存在這樣的x0滿足題意,
∵ef(x0<1-$\frac{a}{2}$x02,∴$\frac{a}{2}$${{x}_{0}}^{2}$+$\frac{{x}_{0}+1}{{e}^{{x}_{0}}}$-1<0,
令h(x)=$\frac{a}{2}$x2+$\frac{x+1}{{e}^{x}}$-1,則h′(x)=x(a-$\frac{1}{{e}^{x}}$),
令h′(x)=0,得:ex=$\frac{1}{a}$,
故x=-lna,取x0=-lna,
在0<x<x0時,h′(x)<0,當x>x0時,h′(x)>0;
∴hmin(x)=h(x0)=$\frac{a}{2}$(-lna)2+alna+a-1,
在a∈(0,1)時,令p(a)=$\frac{a}{2}$(lna)2+alna+a-1,
則p′(a)=$\frac{1}{2}$(lna)2≥0,故p(a)在(0,1)上是增函數(shù),
故p(a)<p(1)=0,
即當x0=-lna時符合題意.

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及函數(shù)恒成立問題,考查分類討論思想,是一道綜合題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{{a{x^2}+x+b}}{x^2}$的單調(diào)遞減區(qū)間為(-∞,0)和(0,+∞).
(1)求實數(shù)b的值;
(2)當x>0時,有$\frac{1}{f(x)}$+f(ex)≥a+1成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知與圓C:x2+y2-2x-2y+1=0相切的直線l分別交x軸和y軸正軸于A,B兩點,O為原點,且|OA|=a,|OB|=b(a>2,b>2).求證:
(1)(a-2)(b-2)=2;
(2)求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知AB是圓C:(x-1)2+y2=1的直徑,點P為直線x-y+3=0上任意一點,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值是( 。
A.2$\sqrt{2}$-1B.1-2$\sqrt{2}$C.7D.-7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=ln(3x+2)-$\frac{3}{2}$x2
(Ⅰ)求f(x)的極值;
(Ⅱ)若對任意x∈[1,2],不等式|a-lnx|+ln|f′(x)+3x|>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=xex+ax2+2x+1在x=-1處取得極值.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)-m-1在[-2,2]上恰有兩個不同的零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,AB是⊙O的直徑,C為⊙O上一點,AD和過C點的切線互相垂直,垂足為D.
(Ⅰ)求證:AC平分∠DAB;
(Ⅱ)若AB=9,AC=6,求CD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)f(x)=logax-x+2(a>0,且a≠1)有且僅有兩個零點的充要條件是( 。
A.0<a<1B.a>1C.1<a<2D.a>2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.函數(shù)y=($\frac{1}{2-a}$)x+1+3(a<2),圖象必經(jīng)過點(-1,4).

查看答案和解析>>

同步練習冊答案