分析 由題意可知I為焦點(diǎn)三角形PF1F2的內(nèi)心,根據(jù)雙曲線的定義,及三角形內(nèi)切圓的性質(zhì),即可求得丨丨AF1丨-丨AF2丨丨=2a=10,A是雙曲線與x軸的交點(diǎn),即A1,A2,由IA⊥F1F2,則點(diǎn)I的橫坐標(biāo)為±5.
解答 解:由點(diǎn)I滿足 $\overrightarrow{PI}|{\overrightarrow{{F_1}{F_2}}}|+\overrightarrow{{F_1}I}|{\overrightarrow{P{F_2}}}|+\overrightarrow{{F_2}I}|{\overrightarrow{P{F_1}}}|=\overrightarrow 0$,則I為焦點(diǎn)三角形PF1F2的內(nèi)心,
設(shè)雙曲線雙曲線$\frac{x^2}{25}-\frac{y^2}{16}=1$的焦點(diǎn)三角形的內(nèi)切圓且三邊F1F2,PF1,PF2于點(diǎn)A,B,C,雙曲線的兩個(gè)頂點(diǎn)為A1,A2,
則 丨PC丨=丨PB丨,丨F1C丨=丨F1A丨,丨F2B丨=丨F2A丨,
丨丨PF1丨-丨PF2丨丨=丨丨CF1丨-丨BF2丨丨=丨丨AF1丨-丨AF2丨丨,
由丨丨PF1丨-丨PF2丨丨=2a=10,丨丨AF1丨-丨AF2丨丨=2a=10,
∴A在雙曲線上,由A在F1F2上,
∴A是雙曲線與x軸的交點(diǎn),即A1,A2,
由IAi⊥F1F2,i=1,2,則
∴點(diǎn)I的橫坐標(biāo)為±5,
故答案為:±5.
點(diǎn)評(píng) 本題考查雙曲線的定義,雙曲線焦點(diǎn)三角形內(nèi)切圓的性質(zhì),雙曲線上任一支上一點(diǎn)與兩焦點(diǎn)組成的三角形的內(nèi)心在實(shí)軸的射影為對(duì)應(yīng)支的頂點(diǎn)結(jié)論的應(yīng)用,考查數(shù)形結(jié)合思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{10}$ | B. | 4 | C. | $2\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -2 | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,3) | B. | $({1,\sqrt{3}})$ | C. | $({\sqrt{3},2})$ | D. | $({\sqrt{3},\sqrt{5}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com