16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{0(x>0)}\\{π(x=0)}\\{{π}^{2}+1(x<0)}\end{array}\right.$,則f(-1)的值等于( 。
A.π2-1B.π2+1C.πD.0

分析 利用函數(shù)性質(zhì)直接求解.

解答 解:∵f(x)=$\left\{\begin{array}{l}{0(x>0)}\\{π(x=0)}\\{{π}^{2}+1(x<0)}\end{array}\right.$,
∴f(-1)=π2+1.
故選:B.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

11.已知集合A={x|x>-2},B={x|1-x>0},則A∩B=(-2,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知向量$\overrightarrow{a}$=(1,cos2x),$\overrightarrow$=(sin2x,-$\sqrt{3}$),函數(shù)f(x)=(1,cos2x)•(sin2x,-$\sqrt{3}$)
(1)若f(${\frac{θ}{2}$+$\frac{2π}{3}}$)=$\frac{6}{5}$,求cos2θ的值;
(2)若x∈[0,$\frac{π}{2}}$],求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設(shè)P是△ABC所在平面α外一點,且P到AB、BC、CA的距離相等,P在α內(nèi)的射影P′在△ABC內(nèi)部,則P′為△ABC的( 。
A.重心B.垂心C.內(nèi)心D.外心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設(shè)a=($\frac{3}{5}$)${\;}^{\frac{2}{5}}}$,b=($\frac{2}{5}$)${\;}^{\frac{3}{5}}}$,c=($\frac{2}{5}$)${\;}^{\frac{2}{5}}}$,d=log2$\frac{2}{5}$則a,b,c,d的大小關(guān)系是( 。
A.b>d>c>aB.a>b>c>dC.c>a>b>dD.a>c>b>d

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.以坐標軸為對稱軸的等軸雙曲線過點(2,$\sqrt{2}$),則該雙曲線的方程是x2-y2=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若一個圓臺的正視圖如圖所示,則其體積等于$\frac{14π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.直線經(jīng)過原點和點(-1,-1),則它的斜率是( 。
A.1B.-1C.1或-1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(cosα,0),$\overrightarrow$=(1,sinα),則|$\overrightarrow{a}$+$\overrightarrow$|的取值范圍為[0,2].

查看答案和解析>>

同步練習冊答案