1.已知向量$\overrightarrow a$=(sin35°,cos35°),$\overrightarrow b$=(cos5°,-sin5°),則$\overrightarrow a$•$\overrightarrow b$=$\frac{1}{2}$.

分析 利用兩個(gè)向量的數(shù)量積的運(yùn)算,兩角差的正弦公式,求得$\overrightarrow a$•$\overrightarrow b$的值.

解答 解:由題意可得 $\overrightarrow a$•$\overrightarrow b$=sin35°cos5°-cos35°sin5°=sin(35°-5°)=sin30°=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積的運(yùn)算,兩角差的正弦公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若log0.2x>1,則x的取值范圍是(0,0.2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.${(a\root{3}{x}-\frac{1}{{\sqrt{x}}})^5}$展開式中各項(xiàng)系數(shù)的和為32,則該展開式中的常數(shù)項(xiàng)為(  )
A.-540B.-270C.540D.270

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.無窮數(shù)列 P:a1,a2,…,an,…,滿足ai∈N*,且ai≤ai+1(i∈N*),對(duì)于數(shù)列P,記Tk(P)=min{n|an≥k}(k∈N*),其中min{n|an≥k}表示集合{n|an≥k}中最小的數(shù).
(1)若數(shù)列P:1?3?4?7?…,則T5(P)=4;
(2)已知a20=46,則s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)=966.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)數(shù)列{an}滿足a1=2,an+1=an2-nan+1,n=1,2,3,…,
(1)求a2,a3,a4;
(2)猜想出{an}的一個(gè)通項(xiàng)公式,并用數(shù)學(xué)歸納法證明你的結(jié)論;
(3)設(shè)bn=$\frac{1}{a_n^2}$,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知各項(xiàng)為正的等比數(shù)列{an}中,a1與a17的等比中項(xiàng)為2,則4a7+a11的最小值為( 。
A.16B.8C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)的定義域?yàn)椋?,1),函數(shù)y=f(x-2)的定義域?yàn)椋ā 。?table class="qanwser">A.(-2,-1)B.(0,2)C.(0,1)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=x3+x-16,則在點(diǎn)(2,-6)處的切線的方程為13x-y-32=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow m$=(cos$\frac{x}{2}$,-1),$\overrightarrow n$=($\sqrt{3}$sin$\frac{x}{2}$,cos2$\frac{x}{2}$),函數(shù)f(x)=$\overrightarrow m$•$\overrightarrow n$+1.
(1)若x∈[0,$\frac{π}{2}$],f(x)=$\frac{11}{10}$,求cosx的值;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足2bcosA≤2c-$\sqrt{3}$a,求角B的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案