6.已知各項(xiàng)為正的等比數(shù)列{an}中,a1與a17的等比中項(xiàng)為2,則4a7+a11的最小值為( 。
A.16B.8C.6D.4

分析 a1與a17的等比中項(xiàng)為2,可得:a1a17=4.利用基本不等式的性質(zhì)與等比數(shù)列的性質(zhì)即可得出.

解答 解:設(shè)各項(xiàng)為正的等比數(shù)列{an}的公比為q,∵a1與a17的等比中項(xiàng)為2,∴a1a17=4.
則4a7+a11≥2$\sqrt{4{a}_{7}•{a}_{11}}$=4$\sqrt{{a}_{1}{a}_{17}}$=4$\sqrt{4}$=8,當(dāng)且僅當(dāng)a7=a11=2時(shí)取等號(hào).
故選:B.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì)與等比數(shù)列的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)函數(shù)y=f(x)的定義域?yàn)镽,對(duì)于給定的正數(shù)K,定義函數(shù)${f_K}(x)=\left\{\begin{array}{l}f(x),f(x)≤K\\ K,f(x)>K\end{array}\right.$,取函數(shù)f(x)=-x2+2x,若對(duì)于任意的x∈(-∞,+∞),恒有fK(x)=f(x),則( 。
A.K的最大值為2B.K的最小值為2C.K的最大值為1D.K的最小值為1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知m∈R,函數(shù)f(x)=$\left\{\begin{array}{l}{|2x+1|,x<1}\\{lo{g}_{2}(x-1),x>1}\end{array}$,g(x)=x2-2x+2m-1,下列敘述中正確的有②
①函數(shù)y=f(f(x))有4個(gè)零點(diǎn);
②若函數(shù)y=g(x)在(0,3)內(nèi)有零點(diǎn),則-1<m≤1;
③函數(shù)y=f(x)+g(x)有兩個(gè)零點(diǎn)的充要條件是m≤-$\frac{1}{2}$或m≥-$\frac{1}{8}$;
④若函數(shù)y=f(g(x))-m有6個(gè)零點(diǎn)則實(shí)數(shù)m的取值范圍是(0,$\frac{3}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知直線y=ex+1與曲線y=ln(x+a)相切,則a的值為$\frac{3}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知向量$\overrightarrow a$=(sin35°,cos35°),$\overrightarrow b$=(cos5°,-sin5°),則$\overrightarrow a$•$\overrightarrow b$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.|x-2|+|x+3|≥4的解集為( 。
A.(-∞,-3]B.$[{-3,-\frac{5}{2}}]$C.$[{-∞,-\frac{5}{2}}]$D.$({-∞,-3})∪({-3,-\frac{5}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x,x<0}\\{\sqrt{x},x≥0}\end{array}\right.$,若關(guān)于x的方程f(x)=a(x+1)有三個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)分別由如表給出
x123
f(x)131
x123
g(x)321
則f(g(1))的值為1;滿(mǎn)足g(f(x))=1的x值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知f(x-1)=x2-2x,則f(x)的表達(dá)式是( 。
A.f(x)=x2-1B.f(x)=x2-xC.f(x)=x2+xD.f(x)=x2+1

查看答案和解析>>

同步練習(xí)冊(cè)答案