如圖:⊙O是ABC的內(nèi)切圓,若∠DEF=55°,則∠BAC=
 

考點(diǎn):與圓有關(guān)的比例線段
專(zhuān)題:選作題,立體幾何
分析:連接OD、OF;根據(jù)切線的性質(zhì)知:OD⊥AB,OF⊥AC,則四邊形ADOF中,∠A+∠DOF=180°,那么解題的關(guān)鍵是求出∠DOF的度數(shù),在⊙O中,∠DOF和∠DEF是同弧所對(duì)的圓心角和圓周角,根據(jù)圓周角定理,易求得∠DOF的度數(shù),由此得解.
解答: 解:如圖,連接OD、OE,則∠ODA=∠OFA=90°.
⊙O中,∠DOF=2∠DEF=2×55°=110°.
四邊形ADEF中,∠ODA=∠OFA=90°,
∴∠BAC+∠DOF=180°,
即∠BAC=180°-∠DOF=70°.
故答案為:70°.
點(diǎn)評(píng):本題考查的是圓的切線的性質(zhì)定理的證明、圓周角定理以及三角形內(nèi)切圓的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)解題中,常會(huì)碰到形如“
x+y
1-xy
”的結(jié)構(gòu),這時(shí)可類(lèi)比正切的和角公式.如:設(shè)a,b是非零實(shí)數(shù),且滿足
asin
π
5
+bcos
π
5
acos
π
5
-bsin
π
5
=tan
15
,則
b
a
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直四棱柱ABCD-A1B1C1D1的底面是梯形,AB∥CD,AD⊥DC,CD=2,DD1=AB=1,P、是CC1的中點(diǎn),求證:PB∥面AD1C.(用兩種方法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}公差不為零,前n項(xiàng)和為Sn,且a1、a2、a5成等比數(shù)列,S5=2a4+4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an•(
1
3
n,求數(shù)列{bn}前n項(xiàng)和為T(mén)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓的焦距等于4
6
,它的一條弦所在直線方程是x-y+4=0,若此弦的中點(diǎn)坐標(biāo)為(-3,1),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x-1,x≤1
f(x-1)+1,x>1
,把函數(shù)f(x)的圖象與直線y=x交點(diǎn)的橫坐標(biāo)按從小到大的順序排列成一個(gè)數(shù)列,則該數(shù)列的前10項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為8,側(cè)棱長(zhǎng)為6,D為AC中點(diǎn).
(1)求證:AB1∥平面C1DB;
(2)求異面直線AB1與BC1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某劇場(chǎng)有40排座位,第一排有20個(gè)座位,以后每排都比前一排多2個(gè)座位.
(1)求該劇場(chǎng)的座位數(shù);
(2)若該劇場(chǎng)票價(jià)如下:每一排至第10排(含第10排)每張200元,第11排至第30排(含第30排)每張150元,其他每張100元,求該劇場(chǎng)滿座時(shí),每場(chǎng)演出的總收入.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題錯(cuò)誤的是(  )
A、命題“若x2=1,則x=1”的否命題為“若x2≠1,則x≠1”
B、若命題p:?x0∈R,x02-x0+1≤0,則¬p:?x∈R,x2-x+1>0
C、△ABC中,sinA>sinB是A>B的充要條件
D、若p∨q為真命題,則p、q均為真命題

查看答案和解析>>

同步練習(xí)冊(cè)答案