A. | $\frac{\sqrt{3}}{16}$ | B. | $\frac{\sqrt{3}}{8}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\frac{4\sqrt{3}}{3}$ |
分析 由曲線方程求出拋物線與雙曲線的焦點(diǎn)坐標(biāo),由兩點(diǎn)式寫出過兩個(gè)焦點(diǎn)的直線方程,求出C1:x2=2py在x取直線與拋物線交點(diǎn)M的橫坐標(biāo)時(shí)的導(dǎo)數(shù)值,由其等于雙曲線漸近線的斜率得到交點(diǎn)橫坐標(biāo)與p的關(guān)系,把M點(diǎn)的坐標(biāo)代入直線方程即可求得p的值.
解答 解:由拋物線C1:x2=2py(p>0),可得焦點(diǎn)坐標(biāo)為F(0,$\frac{p}{2}$).
由雙曲線C2:$\frac{{x}^{2}}{3}{-y}^{2}=1$得a=$\sqrt{3}$,b=1,c=2.
所以雙曲線的右焦點(diǎn)為(2,0).
則拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)的連線所在直線方程為px+4y-2p=0①.
設(shè)該直線交拋物線于M(x0,$\frac{{{x}_{0}}^{2}}{2p}$),則C在點(diǎn)M處的切線的斜率為$\frac{{x}_{0}}{p}$.
由題意可知$\frac{{x}_{0}}{p}$=$\frac{\sqrt{3}}{3}$,得x0=$\frac{\sqrt{3}}{3}$p,代入M點(diǎn)得M($\frac{\sqrt{3}}{3}$p,$\frac{1}{6}$p)
把M點(diǎn)代入①得:p×$\frac{\sqrt{3}}{3}$p+4×$\frac{1}{6}$p-2p=0.
解得p=$\frac{4\sqrt{3}}{3}$.
故選:D.
點(diǎn)評(píng) 本題考查了雙曲線的簡(jiǎn)單幾何性質(zhì),考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,函數(shù)在曲線上某點(diǎn)處的切線的斜率等于函數(shù)在該點(diǎn)處的導(dǎo)數(shù),是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{ln5}{5}$,$\frac{ln2}{2}$) | B. | [$\frac{ln5}{5}$,$\frac{ln3}{3}$) | C. | ($\frac{ln5}{5}$,$\frac{ln2}{2}$] | D. | ($\frac{ln5}{5}$,$\frac{ln3}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i≤1009 | B. | i>1009 | C. | i≤1010 | D. | i>1010 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,6] | B. | [-2,6] | C. | [0,2] | D. | [-2,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:填空題
若數(shù)列滿足,則稱數(shù)列為“差遞減”數(shù)列.若數(shù)列是“差遞減”數(shù)列,且其通項(xiàng)與其前項(xiàng)和()滿足(),則實(shí)數(shù)的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0∈(0,+∞),lnx0≠2x0+1 | B. | ?x0∉(0,+∞),lnx0=2x0+1 | ||
C. | ?x∈(0,+∞),lnx≠2x+1 | D. | ?x∉(0,+∞),lnx≠2x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com