分析 對(duì)判別式△和在區(qū)間[0,1]上的零點(diǎn)個(gè)數(shù)進(jìn)行討論得出ab的最值.
解答 解:∵函數(shù)f(x)=x2+ax+b(a、b∈R)在區(qū)間[0,1]上有零點(diǎn),
∴△=a2-4b≥0,
(1)若△=0,即b=$\frac{{a}^{2}}{4}$時(shí),f(x)的零點(diǎn)為x=-$\frac{a}{2}$,
∴0≤-$\frac{a}{2}$≤1,即-2≤a≤0,
∴ab=$\frac{{a}^{3}}{4}$,
∴當(dāng)a=0時(shí),ab取得最大值0;
(2)若△>0,即b<$\frac{{a}^{2}}{4}$,
①若函數(shù)f(x)=x2+ax+b(a、b∈R)在區(qū)間[0,1]上有一個(gè)零點(diǎn),則f(0)•f(1)≤0,
∴b(1+a+b)≤0,
即b+b2+ab≤0,
∴ab≤-b2-b=-(b+$\frac{1}{2}$)2+$\frac{1}{4}$,
∴ab的最大值是$\frac{1}{4}$;
②若函數(shù)f(x)=x2+ax+b(a、b∈R)在區(qū)間[0,1]上有兩個(gè)零點(diǎn),
∴$\left\{\begin{array}{l}{△={a}^{2}-4b>0}\\{f(0)=b≥0}\\{f(1)=1+a+b≥0}\\{0≤-\frac{a}{2}≤1}\end{array}\right.$,即$\left\{\begin{array}{l}{{a}^{2}>4b}\\{b≥0}\\{a+b≥-1}\\{-2≤a≤0}\end{array}\right.$
顯然ab≤0,
綜上,ab的最大值為$\frac{1}{4}$.
點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),分類討論思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
班級(jí) | A | B | C | D | E | F |
抽取人數(shù) | 6 | 10 | 12 | 12 | 6 | 4 |
其中達(dá)到預(yù)期水平的人數(shù) | 3 | 6 | 6 | 6 | 4 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{3}{r^3}$ | B. | $\frac{8}{3}π{r^3}$ | C. | $\frac{16}{3}{r^3}$ | D. | $\frac{16}{3}π{r^3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com