分析 (1)過點(diǎn)D作DO⊥BC,交BC于O,則DO⊥平面ABC,從而PA∥DO,由此能證明PA∥平面DBC.
(2)推導(dǎo)出BC⊥PA,AD⊥BC,從而BC⊥平面PAD,由此能證明平面DBC⊥平面PAD.
解答 證明:(1)在△BDC中,過點(diǎn)D作DO⊥BC,交BC于O,
∵平面DBC與直線PA均垂直于三角形ABC所在平面,
∴DO⊥平面ABC,∴PA∥DO,
∵PA?平面DBC,DO?平面DBC,
∴PA∥平面DBC.
解:(2)∵直線PA⊥平面ABC,BC?平面ABC,
∴BC⊥PA,
∵AD⊥BC,AD∩PA=A,
∴BC⊥平面PAD,
∵BC?平面DBC,
∴平面DBC⊥平面PAD.
點(diǎn)評 本題考查線面平行的證明,考查面面垂直的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 沒有公共點(diǎn)的兩條直線平行 | B. | 與同一直線垂直的兩條直線平行 | ||
C. | 垂直于同一平面的兩條直線平行 | D. | 若直線a不在平面α內(nèi),則a∥平面α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 3 | C. | $\sqrt{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=cos(2x+$\frac{π}{4}$) | B. | y=cos($\frac{x}{2}$+$\frac{π}{4}$) | C. | y=sin2x | D. | y=-sin2x |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com