20.已知偶函數(shù)f(x)對任意x∈R都有f(x+4)-f(x)=2f(2),則f(2018)=0.

分析 根據(jù)偶函數(shù)的定義,結(jié)合f(x+4)-f(x)=2f(2),令x=-2,求出f(2)=0,從而函數(shù)f(x)是周期為4的函數(shù),f(2018)=f(2),再由偶函數(shù)的定義得f(2)=0.

解答 解:∵f(x)是定義在R上的偶函數(shù),∴f(-2)=f(2),
∵對任意x∈R都有f(x+4)=f(x)+2f(2),
令x=-2,則f(2)=f(-2)+2f(2),
∴f(2)=0,∴f(x+4)=f(x),
即函數(shù)f(x)是最小正周期為4的函數(shù),
∴f(2018)=f(4×504+2)=f(2)=0.
故答案為:0.

點評 本題主要考查函數(shù)的周期性及應(yīng)用,函數(shù)的奇偶性的定義和運用,考查解決抽象函數(shù)常用的方法:賦值法,正確賦值是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)α∈{-3,-2,-1,-$\frac{1}{2}$,$\frac{1}{2}$,1,2,3},則使y=xα為奇函數(shù)且在(0,+∞)上單調(diào)遞減的α值的個數(shù)為 ( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,1),若$\overrightarrow{a}$⊥$\overrightarrow$,則x=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求值:
(1)(${\frac{27}{8}}$)${\;}^{-\frac{2}{3}}}$-3-1+(-$\frac{7}{8}$)0;
(2)lg4+3lg5+lg$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知關(guān)于x,y的方程組(*)$\left\{\begin{array}{l}{x+my+6=0}\\{(m-2)x+3y=-2m}\end{array}\right.$;
(1)寫出方程組(*)的增廣矩陣;
(2)解方程組(*),并對解的情況進行討論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量$\overrightarrow{a}$=(3,2),$\overrightarrow$=(-12,x-4),且$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)x=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.關(guān)于x、y的二元線性方程組$\left\{\begin{array}{l}{2x+my=5}\\{nx-3y=2}\end{array}\right.$的增廣矩陣經(jīng)過變換,最后得到的矩陣為$(\begin{array}{l}{1}&{0}&{3}\\{0}&{1}&{1}\end{array})$,則$\frac{m}{n}$=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知平面向量$\overrightarrow α$,$\overrightarrow β$(${\overrightarrow α$≠$\overrightarrow β}$)滿足$\overrightarrow{|α|}$=2,且$\overrightarrow α$與$\overrightarrow β$-$\overrightarrow α$的夾角為120°,t∈R,則|(1-t)$\overrightarrow α$+t$\overrightarrow β}$|的最小值是$\sqrt{3}$.已知$\overline{a}$•$\overrightarrow$=0,向量$\overrightarrow{c}$滿足($\overrightarrow{c}$-$\overrightarrow{a}$)($\overrightarrow{c}$-$\overrightarrow$)=0,|$\overrightarrow{a}$-$\overrightarrow$|=5,|$\overrightarrow{a}$-$\overrightarrow{c}$|=3,則$\overrightarrow{a}$•$\overrightarrow{c}$的最大值為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知集合A={1,a},B={a2},若A∪B=A,則實數(shù)a=-1或0.

查看答案和解析>>

同步練習(xí)冊答案