7.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x≥1\\ y≥x-1\\ x+y≤4\end{array}\right.$,目標(biāo)函數(shù)z=x+y,則當(dāng)z=3時(shí),x2+y2的取值范圍是( 。
A.$[\frac{{3\sqrt{2}}}{2},\sqrt{5}]$B.$[\frac{{3\sqrt{2}}}{2},5]$C.$[\frac{9}{2},5]$D.$[\sqrt{5},\frac{9}{2}]$

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,即可得到結(jié)論

解答 解:作出不等式對(duì)應(yīng)的平面區(qū)域,
當(dāng)目標(biāo)函數(shù)z=x+y,則當(dāng)z=3時(shí),即x+y=3時(shí),作出此時(shí)的直線,
則x2+y2的幾何意義為動(dòng)點(diǎn)P(x,y)到原點(diǎn)的距離的平方,
當(dāng)直線x+y=3與圓x2+y2=r2相切時(shí),距離最小,
即原點(diǎn)到直線x+y=3的距離d=$\frac{3}{\sqrt{2}}$,即最小值為d2=$\frac{9}{2}$,
當(dāng)直線x+y=3與圓x2+y2=r2相交與點(diǎn)B或C時(shí),距離最大,
由$\left\{\begin{array}{l}{x=1}\\{x+y=3}\end{array}\right.$,解得x=1,y=2,即B(1,2),同理解得C(2,1)
此時(shí)r2=x2+y2=22+12=5,
故選:C.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問(wèn)題的基本方法.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦點(diǎn)為F,B為其左支上一點(diǎn),線段BF與雙曲線的一條漸進(jìn)線相交于A,且$(\overrightarrow{OF}-\overrightarrow{OB})•\overrightarrow{OA}=0$,$2\overrightarrow{OA}=\overrightarrow{OB}+\overrightarrow{OF}$(O為坐標(biāo)原點(diǎn)),則雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.等腰△ABC,E為底邊BC的中點(diǎn),沿AE折疊,如圖,將C折到點(diǎn)P的位置,使二面角P-AE-C的大小為120°,設(shè)點(diǎn)P在面ABE上的射影為H.
(I)證明:點(diǎn)H為BE的中點(diǎn);
(II)若AB=AC=2$\sqrt{2}$,AB⊥AC,求直線BE與平面ABP所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)$f(x)=2msinx-2{cos^2}x+\frac{m^2}{2}-4m+3$,且函數(shù)f(x)的最小值為-7,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在直角△ABC中,∠BCA=90°,CA=CB=1,P為AB邊上的點(diǎn)$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,若$\overrightarrow{CP}$•$\overrightarrow{AB}$≥$\overrightarrow{PA}$•$\overrightarrow{PB}$,則λ的最大值是( 。
A.$\frac{{2+\sqrt{2}}}{2}$B.$\frac{{2-\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.雙曲線$\frac{{x}^{2}}{m}-\frac{{y}^{2}}{4}$=1的焦距為6,則m的值是( 。
A.6或2B.5C.1或9D.3或5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知tanθ=2,則sinθcosθ=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知圓C:x2+y2-2x-4y-20=0及直線l:(2m+1)x+(m+1)y=7m+4(m∈R).
(1)證明:不論m取什么實(shí)數(shù),直線l與圓C總相交;
(2)求直線l被圓C截得的弦長(zhǎng)的最小值及此時(shí)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)計(jì)算 $\frac{\sqrt{3}sin(-\frac{20}{3}π)}{tan\frac{11}{3}π}$-cos$\frac{13}{4}$π•tan(-$\frac{37}{4}$π).
(2)已知tan α=$\frac{4}{3}$,求下列各式的值:①$\frac{sin2α+2sinαcosα}{2cos2α-sin2α}$;②sin αcos α.

查看答案和解析>>

同步練習(xí)冊(cè)答案