【題目】a,b為正數(shù),給出下列命題:

①若a2﹣b2=1,則a﹣b<1;

②若=1,則a﹣b<1;

③ea﹣eb=1,則a﹣b<1;

④若lna﹣lnb=1,則a﹣b<1.

其中真命題的有_____

【答案】①③

【解析】

不正確的結(jié)論,列舉反例,正確的結(jié)論,進(jìn)行嚴(yán)密的證明,即可得出結(jié)論.

①中,a,b中至少有一個大于等于1,則a+b>1,由a2-b2=(a+b)(a-b)=1,所以a-b<1,故①正確.

②中=1, 只需a-b=ab即可,取a=2,b=,滿足上式但a-b=>1故②錯;
③構(gòu)造函數(shù)y=x-ex,x>0,y′=1-ex<0,函數(shù)單調(diào)遞減,∵ea-eb=1,∴a>b,∴a-ea<b-eb
∴a-b<ea-eb=1,故③正確;

④若lna-lnb=1,則a=e,b=1,a-b=e-1>1,故④不正確.

故答案為:①③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),若以直角坐標(biāo)系中的原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為為實數(shù).

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

2)若曲線與曲線有公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的右焦點,點上,且軸.

(1)求的方程;

(2)過的直線兩點,交直線于點.判定直線的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四種說法中,

①命題“存在x∈R,x2﹣x>0”的否定是“對于任意x∈R,x2﹣x<0”;

②命題“p且q為真”是“p或q為真”的必要不充分條件;

③已知冪函數(shù)f(x)=xα的圖象經(jīng)過點(2,),則f(4)的值等于;

④已知向量a=(3,4),b=(2,1),b =(2,1),則向量a在向量b方向上的投影是

其中說法正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)上年度電價為0.8,年用電量為,本年度計劃將電價降到0.550.75之間,而用戶期待電價為0.4,下調(diào)電價后新增加的用電量與實際電價和用戶期望電價的差成反比(比例系數(shù)為K),該地區(qū)的電力成本為0.3.(注:收益=實際用電量(實際電價-成本價)),示例:若實際電價為0.6,則下調(diào)電價后新增加的用電量為)

1)寫出本年度電價下調(diào)后,電力部門的收益與實際電價的函數(shù)關(guān)系;

2)設(shè),當(dāng)電價最低為多少仍可保證電力部門的收益比上一年至少增長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中的導(dǎo)函數(shù).

.

1)求的表達(dá)式;

2)求證:,其中nN*.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解戶籍性別對生育二胎選擇傾向的影響,某地從育齡人群中隨機抽取了容量為的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)民戶籍各人;男性人,女性.繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對應(yīng)比例,則下列敘述中錯誤的是(

A.是否傾向選擇生育二胎與戶籍有關(guān)

B.是否傾向選擇生育二胎與性別無關(guān)

C.傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同

D.傾向選擇不生育二胎的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案