求函數(shù)的最小值,其中

。時,;ⅱ) 時,

解析試題分析:,

y在上遞減, 上遞增
。,即
,在取到最小
ⅱ),即
,當時取到最小
考點:本題考查了函數(shù)性質(zhì)的運用
點評:某些代數(shù)式需要經(jīng)過一定的變形處理后方可利用基本不等式加以求解,所以要掌握均值不等式的變形形式

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

某小區(qū)想利用一矩形空地建市民健身廣場,設計時決定保留空地邊上的一水塘(如圖中陰影部分),水塘可近似看作一個等腰直角三角形,其中,且中,,經(jīng)測量得到.為保證安全同時考慮美觀,健身廣場周圍準備加設一個保護欄.設計時經(jīng)過點作一直線交,從而得到五邊形的市民健身廣場,設
(1)將五邊形的面積表示為的函數(shù);
(2)當為何值時,市民健身廣場的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,短軸一個端到右焦點的距離為.
(Ⅰ)求橢圓C的方程:
(Ⅱ)設直線與橢圓C交于A、B兩點,坐標原點O到直線的距離為,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示:用籬笆圍成一個一邊靠墻的矩形菜園 ,假設墻有足夠長.

(Ⅰ) 若籬笆的總長為,則這個矩形的長,寬各為多少時,菜園的面積最大?
(Ⅱ) 若菜園的面積為,則這個矩形的長,寬各為多少時,籬笆的總長最短?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知矩形ABCD,AB=8,BC=6,按以下兩種方法將其折疊為兩部分,設兩部分的面積為,折痕為線段EF,問用哪一種方法折疊,折痕EF最長?并求EF長度的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


為了提高產(chǎn)品的年產(chǎn)量,某企業(yè)擬在2013年進行技術(shù)改革.經(jīng)調(diào)查測算,產(chǎn)品當年的產(chǎn)量萬件與投入技術(shù)改革費用萬元()滿足為常數(shù)).如果不搞技術(shù)改革,則該產(chǎn)品當年的產(chǎn)量只能是1萬件.已知2013年生產(chǎn)該產(chǎn)品的固定收入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元.由于市場行情較好,廠家生產(chǎn)的產(chǎn)品均能銷售出去.廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品生產(chǎn)成本的倍(生產(chǎn)成本包括固定投入和再投入兩部分資金).
(Ⅰ)試確定的值,并將2013年該產(chǎn)品的利潤萬元表示為技術(shù)改革費用萬元的函數(shù)(利潤=銷售金額­―生產(chǎn)成本―技術(shù)改革費用);
(Ⅱ)該企業(yè)2013年的技術(shù)改革費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)利用基本不等式求最值:
(1)若,求函數(shù) 的最小值,并求此時x的值.
(2)設 ,求函數(shù) 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

在約束條件下,目標函數(shù)的最大值大于2,則的取值范圍為(    ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若變量滿足約束條件,則的最大值等于(   )

A. B. C. D.

查看答案和解析>>

同步練習冊答案