已知在遞增等差數(shù)列{an}中,前三項的和為9,前三項的積為15,{bn}的前n項和為Sn,且Sn=2n+1-2.
(1)求數(shù)列{an},{bn}的通項公式; 
(2)設(shè)cn=
1
anan+1
,求{cn}的前n項和Tn
考點:數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)設(shè)遞增等差數(shù)列{an}的公差為d,利用前三項的和為9,前三項的積為15,利用等差數(shù)列的通項公式可得a1+a1+d+a1+2d=9,a1(a1+d)(a1+2d)=15,
{bn}的前n項和為Sn,且Sn=2n+1-2.b1=S1,當(dāng)n≥2時,an=Sn-Sn-1,即可得出.
(2)cn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,利用“裂項求和”即可得出.
解答: 解:(1)設(shè)遞增等差數(shù)列{an}的公差為d,
∵前三項的和為9,前三項的積為15,
∴a1+a1+d+a1+2d=9,
a1(a1+d)(a1+2d)=15,
解得a1=1,d=2.
∴an=1+2(n-1)=2n-1.
∵{bn}的前n項和為Sn,且Sn=2n+1-2.
∴b1=S1=22-2=2,
當(dāng)n≥2時,an=Sn-Sn-1=2n+1-2-(2n-2)=2n
當(dāng)n=1時,上式也成立.
∴bn=2n
(2)cn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,
∴{cn}的前n項和Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)
+…+(
1
2n-1
-
1
2n+1
)]

=
1
2
(1-
1
2n+1
)

=
n
2n+1
點評:本題考查了等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式、“裂項求和”,考查了推理能力與計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

loga
2
3
<1(0<a<1),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)P,Q是拋物線y2=2px(p>0)上不同兩點,已知P,Q到y(tǒng)軸的距離的積為雙曲線
x2
4
-
y2
12
=1的離心率的2倍,OP⊥OQ.
(1)求該拋物線的標(biāo)準(zhǔn)方程.
(2)過Q的直線分別與拋物線和x軸交于R,T兩點,且RQ=QT,試求弦PR長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinxcos(x+
π
3
)+
3
4
,x∈R.
(Ⅰ)求f(x)的最大值及最小正周期;
(Ⅱ)若斜率為
1
2
的直線與f(x)相切,求其切點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足2an+1+an=3(n∈N*),且a1=7,其前n項和為Sn,則滿足不等式|Sn-n-4|<
1
2014
的最小整數(shù)n是(  )
A、11B、12C、13D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列1,2
1
2
,3
1
4
,4
1
8
,5
1
16
,6
1
32
,…的前10項之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
,
b
c
均為單位向量,且
a
b
=0
,則(
a
-
c
)•(
b
-
c
)
的最小值為( 。
A、-2
B、
2
-3
C、-1
D、1-
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=-x2+2x在[1,2]上的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=|-1|-|3x-a|的最大值為1,則實數(shù)a的值是
 

查看答案和解析>>

同步練習(xí)冊答案