設(shè)f(x)=-x2+2x在[1,2]上的最大值為
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由二次函數(shù)的圖象和性質(zhì),分析函數(shù)f(x)=-x2+2x在[1,2]上單調(diào)性,進(jìn)而可得函數(shù)f(x)=-x2+2x在[1,2]上的最值.
解答: 解:∵函數(shù)f(x)=-x2+2x的圖象是開(kāi)口朝上,且以直線x=1為對(duì)稱軸的拋物線,
故函數(shù)f(x)=-x2+2x在[1,2]上為減函數(shù),
又∵f(2)=0.f(1)=1,
故函數(shù)f(x)=-x2+2x在[1,2]上的最大值為1,
故答案為:1
點(diǎn)評(píng):本題主要考查二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ax+φ)(A>0,ω>0,|φ|<
π
2
),圖象的一個(gè)最高點(diǎn)為(
π
3
,2),圖象兩條相鄰的對(duì)稱軸之間的距離為
π
2

(1)求函數(shù)的解析式;
(2)設(shè)α∈[0,π],f(
α
2
)=1,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在遞增等差數(shù)列{an}中,前三項(xiàng)的和為9,前三項(xiàng)的積為15,{bn}的前n項(xiàng)和為Sn,且Sn=2n+1-2.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式; 
(2)設(shè)cn=
1
anan+1
,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M在以 F1(-8,0),F(xiàn)2(8.0)為焦點(diǎn),離心率為的e=
4
5
橢圓上移動(dòng),則|MF1|•|MF2|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(-2,4),
b
=(-2,3m),
c
=(4m,-4),若(
a
-2
b
)⊥
c
,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的奇函數(shù)f(x)滿足:當(dāng)x>0時(shí),f(x)=2015x+log2015x,則方程f(x)=0的實(shí)根的個(gè)數(shù)為( 。
A、1B、2C、3D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2+2x+b(b為常數(shù)),則f(-1)=( 。
A、3B、-3C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí)f(x)=3x,若f(x0)=-
1
9
,則x0=( 。
A、-2
B、-
1
2
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinθ=
4
5
,sinθcosθ<0,求sin(θ-π)sin(
3
2
π-θ)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案