已知函數(shù),若的最大值為1
(Ⅰ)求的值,并求的單調(diào)遞增區(qū)間;
(Ⅱ)在中,角、、的對邊、、,若,且,試判斷三角形的形狀.
(Ⅰ),; (Ⅱ)△ABC為直角三角形.
解析試題分析:(Ⅰ)若的最大值為1,求的值,并求的單調(diào)遞減區(qū)間,需將化成一個角的一個三角函數(shù),因此須對進(jìn)行整理,可利用兩角或與差的三角函數(shù)公式展開得到,然后利用兩角和與差的三角函數(shù)公式整理成,利用的最大值為1,來確定的值,并求得的單調(diào)遞減區(qū)間;(Ⅱ)判斷三角形的形狀,由,可求出角B的值,由已知,利用正弦定理將邊化成角,由于,則,即,從而求出,這樣就判斷出三角形的形狀.
試題解析:(Ⅰ)由題意可得 (3分)
,所以, (4分)
令,解不等式可得單調(diào)增區(qū)間為 (6分)
(Ⅱ)因為, 則, , ∵,
∴ (8分)
又,則,
∴ (10分)
∴,所以,故△ABC為直角三角形 (12分)
考點:兩角和正弦公式,正弦函數(shù)的單調(diào)性與最值,根據(jù)三角函數(shù)的值求角,解三角形.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=sinx+cosx,f′(x)是f(x)的導(dǎo)函數(shù),F(x)=f(x)f′(x)+f2(x)
(Ⅰ)求F(x)的最小正周期及單調(diào)區(qū)間;
(Ⅱ)求函數(shù)F(x)在上的值域;
(Ⅲ)若f(x)=2f′(x),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(其中)的圖象如圖所示.
(1) 求函數(shù)的解析式;
(2) 設(shè)函數(shù),且,求的單調(diào)區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com