已知函數(shù),
(1)判斷函數(shù)的奇偶性;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若關(guān)于的方程有實數(shù)解,求實數(shù)的取值范圍
(1)偶函數(shù);(2),;(3)
解析試題分析:(1)判斷奇偶性,需先分析函數(shù)的定義域要關(guān)于原點對稱,然后分析解析式與的關(guān)系可得;(2)根據(jù)偶函數(shù)在對稱區(qū)間上的單調(diào)性相反,所以可以考慮先分析時的單調(diào)性,于是在時利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,然后再分析對稱區(qū)間上的單調(diào)性;(3)把方程的根轉(zhuǎn)化為函數(shù)的零點,然后利用導(dǎo)數(shù)分析函數(shù)的最值,保證函數(shù)圖形與的交點的存在
試題解析:(1)函數(shù)的定義域為且關(guān)于坐標(biāo)原點對稱 1分
為偶函數(shù) 4分
(2)當(dāng)時, 5分
令
令
6分
所以可知:當(dāng)時,單調(diào)遞減,
當(dāng)時,單調(diào)遞增, 7分
又因為是偶函數(shù),所以在對稱區(qū)間上單調(diào)性相反,所以可得:
當(dāng)時,單調(diào)遞增,
當(dāng)時,單調(diào)遞減, 8分
綜上可得:的遞增區(qū)間是:,;
的遞減區(qū)間是: , 10分
(3)由,即,顯然,
可得:令,當(dāng)時,
12分
顯然,當(dāng)時,,單調(diào)遞減,
當(dāng)時,,單調(diào)遞增,
時, 14分
又,所以可得為奇函數(shù),所以圖像關(guān)于坐標(biāo)原點對稱
所以可得:當(dāng)時, 16分
∴的值域為 ∴的取值范圍是
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)為奇函數(shù),求a的值;
(2)若,直線都不是曲線的切線,求k的取值范圍;
(3)若,求在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)證明 當(dāng),時,;
(2)討論在定義域內(nèi)的零點個數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(Ⅰ)當(dāng),時,求的單調(diào)區(qū)間;
(2)當(dāng),且時,求在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)在處取得極值,且曲線在點處的切線垂直于直線.
(1)求的值;
(2)若函數(shù),討論的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)若,對一切恒成立,求的最大值;
(2)設(shè),且、是曲線上任意兩點,若對任意,直線的斜率恒大于常數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(理)已知函數(shù)f(x)= -lnx,x∈[1,3].
(Ⅰ)求f(x)的最大值與最小值;
(Ⅱ)若f(x)<4-At對于任意的x∈[1,3],t∈[0,2]恒成立,求實數(shù)A的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)為奇函數(shù),其圖象在點處的切線與直線垂直,導(dǎo)函數(shù) 的最小值為.
(1)求的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間,并求函數(shù)在上的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com