已知點
P是雙曲線
C:
左支上一點,
F1,
F2是雙曲線的左、右兩個焦點,且
PF1⊥
PF2,
PF2與兩條漸近線相交于
M,N兩點(如圖),點
N恰好平分線段
PF2,則雙曲線的離心率是( )
試題分析:在三角形
中,點N恰好平分線段PF
2,點O恰好平分線段F
1F
2,
∴ON∥PF
1,又ON的斜率為
,∴tan∠PF
1F
2=
,
在三角形
中,設PF
2=bt.PF
1=at,
根據(jù)雙曲線的定義可知|PF
2|-|PF
1|=2a,∴bt-at=2a,①
在直角三角形F
1F
2P中,|PF
2|
2+|PF
1|
2=4c
2,∴b
2t
2+a
2t
2=4c
2,②
由①②消去t,得
,又c
2=a
2+b
2,
∴a
2=(b-a)
2,即b=2a,∴雙曲線的離心率
.選A.
點評:本題主要考查了雙曲線的簡單性質,考查了學生對雙曲線定義和基本知識的掌握,屬于基礎題.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
已知拋物線
上一定點B(-1,0)和兩個動點
,當
時,點
的橫坐標的取值范圍是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知F
1、F
2分別為橢圓C
1:
的上、下焦點,其中F
1也是拋物線C
2:
的焦點,點A是曲線C
1,C
2在第二象限的交點,且
(Ⅰ)求橢圓
1的方程;
(Ⅱ)已知P是橢圓C
1上的動點,MN是圓C:
的直徑,求
的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知中心在坐標原點焦點在
軸上的橢圓C,其長軸長等于4,離心率為
.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點
(0,1), 問是否存在直線
與橢圓
交于
兩點,且
?若存在,求出
的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知橢圓
的左焦點為F,過點F的直線交橢圓于A、B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D、E兩點.
(Ⅰ)若點G的橫坐標為
,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S
1,△OED(O為原點)的面積為S
2.
試問:是否存在直線AB,使得S
1=S
2?說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知極坐標系的極點為直角坐標系
的原點,極軸為
x軸的正半軸,兩種坐標系中的長度單位相同,已知曲線
的極坐標方程為
.
(1)求
的直角坐標方程;
(2)直線
(
為參數(shù))與曲線
C交于
,
兩點,與
軸交于
,求
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知雙曲線
的左右焦點分別是
,設
是雙曲線右支上一點,
在
上投影的大小恰好為
,且它們的夾角為
,則雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設
分別是橢圓的
左,右焦點。
(Ⅰ)若
是第一象限內該橢圓上的一點,且
,求點
的坐標。
(Ⅱ)設過定點
的直線與橢圓交于不同的兩點
,且
為銳角(其中O為坐標原點),求直線
的斜率
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線
的焦點與橢圓
的右焦點重合.(Ⅰ)求拋物線
的方程;
(Ⅱ)動直線
恒過點
與拋物線
交于
A、
B兩點,與
軸交于
C點,請你觀察并判斷:在線段
MA,
MB,
MC,
AB中,哪三條線段的長總能構成等比數(shù)列?說明你的結論并給出證明.
查看答案和解析>>