已知雙曲線
的左右焦點(diǎn)分別是
,設(shè)
是雙曲線右支上一點(diǎn),
在
上投影的大小恰好為
,且它們的夾角為
,則雙曲線的離心率為( )
試題分析:解:∵
在
上的投影的大小恰好為
∴PF
1⊥PF
2,且它們的夾角為
,∴∠PF
1F
2=
∴在直角三角形PF
1F
2中,F(xiàn)
1F
2=2c,∴PF
2=c,PF
1=
c,又根據(jù)雙曲線的定義得:PF
1-PF
2=2a,∴
c-c=2a,∴
c:a=
,e=
故選C.
點(diǎn)評:本題主要考查了雙曲線的簡單性質(zhì).考查了學(xué)生綜合分析問題和運(yùn)算的能力.解答關(guān)鍵是通過解三角形求得a,c的關(guān)系從而求出離心率.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,橢圓
的頂點(diǎn)為
,焦點(diǎn)為
,
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)n 為過原點(diǎn)的直線,
是與n垂直相交于P點(diǎn),與橢圓相交于A, B兩點(diǎn)的直線,
.是否存在上述直線
使
成立?若存在,求出直線
的方程;并說出;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),右頂點(diǎn)為
(1)求雙曲線C的方程;
(2)若直線
與雙曲線C恒有兩個不同的交點(diǎn)A和B,且
(其中O為原點(diǎn)). 求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
點(diǎn)
關(guān)于直線
的對稱點(diǎn)
的坐標(biāo)為
;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知點(diǎn)
P是雙曲線
C:
左支上一點(diǎn),
F1,
F2是雙曲線的左、右兩個焦點(diǎn),且
PF1⊥
PF2,
PF2與兩條漸近線相交于
M,N兩點(diǎn)(如圖),點(diǎn)
N恰好平分線段
PF2,則雙曲線的離心率是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在平面直角坐標(biāo)系
中,若雙曲線
的焦距為8,則
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
過雙曲線
(
)的右焦點(diǎn)
作圓
的切線
,交
軸于點(diǎn)
,切圓于點(diǎn)
,若
,則雙曲線的離心率是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(
,
)的圖象恒過定點(diǎn)
,橢圓
:
(
)的左,右焦點(diǎn)分別為
,
,直線
經(jīng)過點(diǎn)
且與⊙
:
相切.
(1)求直線
的方程;
(2)若直線
經(jīng)過點(diǎn)
并與橢圓
在
軸上方的交點(diǎn)為
,且
,求
內(nèi)切圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的左右焦點(diǎn)分別為
、
,離心率
,直線
經(jīng)過左焦點(diǎn)
.
(1)求橢圓
的方程;
(2)若
為橢圓
上的點(diǎn),求
的范圍.
查看答案和解析>>