在平面直角坐標系
中,動點
到兩點
,
的距離之和等于4,設(shè)點
的軌跡為曲線C,直線過點
且與曲線C交于A,B兩點.
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,請說明理由.
(Ⅰ)
;(Ⅱ)存在;最大值為
試題分析:該題考察曲線方程的求法、直線和橢圓的位置關(guān)系、函數(shù)的最大值,考察數(shù)形結(jié)合、綜合分析問題和解決問題的能力.(Ⅰ)由已知曲線
是以
為焦點的橢圓,且
,故曲線
的方程為
;(Ⅱ)設(shè)過點
的直線方程為:
,將它與橢圓:
聯(lián)立,可得
,設(shè)
,
,然后根據(jù)韋達定理代入,可得關(guān)于
的函數(shù),再求其最大值即可.
試題解析:(Ⅰ)由橢圓定義可知,點
的軌跡C是以
,
為焦點,長半軸長為2的橢圓.
故曲線
的方程為
. 4分
(Ⅱ)存在△
面積的最大值.
因為直線過點
,可設(shè)直線的方程為
或
(舍).
則
整理得
. 7分
由
.
設(shè)
.
解得
,
.
則
.
因為
. 10分
設(shè)
,
,
.
則
在區(qū)間
上為增函數(shù).
所以
.
所以
,當且僅當
時取等號,即
.
所以
的最大值為
. 12分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在
軸上方有一段曲線弧
,其端點
、
在
軸上(但不屬于
),對
上任一點
及點
,
,滿足:
.直線
,
分別交直線
于
,
兩點.
(Ⅰ)求曲線弧
的方程;
(Ⅱ)求
的最小值(用
表示);
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓C的中心在坐標原點,
焦點在x軸上,左、右焦瞇分別為F
1,F(xiàn)
2,且|F
1F
2|=2,點P(1,
)在橢圓C上.
(I)求橢圓C的方程;
(II)過F
1的直線l與橢圓C相交于A,B兩點,且
的面積為
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓長軸的左右端點分別為A,B,短軸的上端點為M,O為橢圓的中心,F(xiàn)為橢圓的右焦點,且
·
=1,|
|=1.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線l交橢圓于P,Q兩點,問:是否存在直線l,使得點F恰為△PQM的垂心?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
(
)右頂點到右焦點的距離為
,短軸長為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點
的直線與橢圓分別交于
、
兩點,若線段
的長為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,A,B是橢圓
的兩個頂點,
,直線AB的斜率為
.求橢圓的方程;(2)設(shè)直線
平行于AB,與x,y軸分別交于點M、N,與橢圓相交于C、D,
證明:
的面積等于
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
和雙曲線
有公共的焦點,那么雙曲線的漸近線方程為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知點
(3,4)在橢圓
上,則以點
為頂點的橢圓的內(nèi)接矩形
的面積是( 。
A.12 | B.24 |
C.48 | D.與的值有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓
上一點M到焦點F
1的距離為2,N是MF
1的中點.則|ON|等于( )
A.2 | B.4 | C.8 | D. |
查看答案和解析>>