【題目】四棱柱中,底面為正方形, 平面為棱的中點(diǎn), 為棱的中點(diǎn), 為棱的中點(diǎn).

1)證明:平面平面;

2)若,棱上有一點(diǎn),且,使得二面角的余弦值為,求的值.

【答案】(1)見解析;(2) .

【解析】試題分析: 四邊形為平行四邊形得,由中點(diǎn)得,

得證 為原點(diǎn), 方向分別為軸、軸、軸正方向,建立如圖所示的空間垂直坐標(biāo)系,求平面的一個(gè)法向量為,平面的一個(gè)法向量為,代入公式求出結(jié)果

解析:(1)分別為棱中點(diǎn),

,

四邊形為平行四邊形,

,

平面

平面.

為棱的中點(diǎn),

,

,

平面

平面.

,

平面.

2)由題意知兩兩垂直,以為原點(diǎn), 方向分別為軸、軸、軸正方向,建立如圖所示的空間垂直坐標(biāo)系,

設(shè),則,

設(shè),則由,

設(shè)平面的一個(gè)法向量為,則

,

設(shè)平面的一個(gè)法向量為,則,

,

由題知,

解得(與矛盾,舍去),

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人參加普法知識競賽,共有5題,選擇題3個(gè),判斷題2個(gè),甲、乙兩人各抽一題.

1)甲、乙兩人中有一個(gè)抽到選擇題,另一個(gè)抽到判斷題的概率是多少?

2)甲、乙兩人中至少有一人抽到選擇題的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】探究函數(shù)的圖象與性質(zhì).

1)下表是yx的幾組對應(yīng)值.

其中m的值為_______________

2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并已畫出了函數(shù)圖象的一部分,請你畫出該圖象的另一部分;

3)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì):_________;

4)若關(guān)于x的方程2個(gè)實(shí)數(shù)根,則t的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,E,F(xiàn)分別為AB,AC的中點(diǎn),PEF上的任一點(diǎn),實(shí)數(shù)x,y滿足,設(shè)△ABC,PBC,PCA,PAB的面積分別為S,S1,S2,S3,記 ,則λ2λ3取到最大值時(shí),2x+y的值為( 。

A. ﹣1 B. 1 C. - D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形OABC中,過點(diǎn)C的直線與線段OA、OB分別相交于點(diǎn)M、N,若;(1)求y關(guān)于x的函數(shù)解析式;(2)定義函數(shù),點(diǎn)列Pi(xi,F(xiàn)(xi))(i=1,2,…,n,n2)在函數(shù)y=F(x)的圖象上,且數(shù)列{xn}是以1為首項(xiàng),0.5為公比的等比數(shù)列,O為原點(diǎn),令,是否存在點(diǎn)Q(1,m),使得?若存在,求出Q點(diǎn)的坐標(biāo),若不存在,說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某文體局為了解“跑團(tuán)”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期間“跑團(tuán)”每月跑步的平均里程(單位:公里)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)折線圖,下列結(jié)論正確的是( )

A. 月跑步平均里程的中位數(shù)為6月份對應(yīng)的里程數(shù)

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在8、9月

D. 1月至5月的月跑步平均里程相對于6月至11月,波動(dòng)性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)在以為直徑的圓上,垂直與圓所在平面,的垂心.

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體ABCD-A1B1C1D1的棱長為a,點(diǎn)E,F,G分別為棱ABAA1,C1D1的中點(diǎn).下列結(jié)論中,正確結(jié)論的序號是______

①過E,F,G三點(diǎn)作正方體的截面,所得截面為正六邊形;

B1D1∥平面EFG;

BD1⊥平面ACB1;

④異面直線EFBD1所成角的正切值為

⑤四面體ACB1D1的體積等于a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)求的定義域;

(2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案