2.在等差數(shù)列{an}中,前n項(xiàng)和為Sn,若a10=18,S5=-15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求S3-S4的值.

分析 (1)利用等差數(shù)列的通項(xiàng)公式與求和公式即可得出.
(2)利用等差數(shù)列的求和公式即可得出.

解答 解:(1)設(shè){an}的首項(xiàng),公差分別為a1,d.
則$\left\{\begin{array}{l}{a_1}+9d=18\\ 5{a_1}+\frac{5}{2}×4×d=-15\end{array}\right.$
解得a1=-9,d=3,
∴an=3n-12.
(2)∵${S_n}=\frac{{n({a_1}+{a_n})}}{2}=\frac{1}{2}(3{n^2}-21n)$,
∴S3=-18,S4=-18,
∴S3-S4=0.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若a,b,c∈R,且滿足|a-c|<b,給出下列結(jié)論,①a+b>c;②b+c>a;③a+c>b;④|a|+|b|>|c|;其中錯(cuò)誤的個(gè)數(shù)( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)函數(shù)f(x)=3|x|,則f(x)在區(qū)間(m-1,2m)上不是單調(diào)函數(shù),則實(shí)數(shù)m的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.半徑為1,圓心角為$\frac{2}{3}π$的扇形卷成一個(gè)圓錐,則它的體積為( 。
A.$\frac{{2\sqrt{2}π}}{81}$B.$\frac{{2\sqrt{2}π}}{27}$C.$\frac{π}{27}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在四棱錐S-ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是線段AD上一點(diǎn),AE=ED=$\sqrt{3}$,SE⊥AD.
(I)證明:BE⊥SC
(II)(文)若SE=1,求點(diǎn)E到平面SBC的距離.
(理)若SE=1,求二面角B-SC-D平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若sinα是方程5x2-7x-6=0的根,則$\frac{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α)ta{n}^{2}(2π-α)}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)sin(3π+α)}$=$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知tanα=$\frac{1}{7}$,sinβ=$\frac{{\sqrt{10}}}{10}$,α,β∈(0,$\frac{π}{2}$),求α+2β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.給出下列命題:
①存在實(shí)數(shù)α,使sinα•cosα=$\frac{1}{3}$;
②函數(shù)y=sin4x-cos4x的最小正周期是π;
③設(shè)$\overrightarrow a,\overrightarrow b$是兩個(gè)非零向量,若存在實(shí)數(shù)λ,使$\overrightarrow b$=λ$\overrightarrow a$,則|$\overrightarrow a$+$\overrightarrow b$|=|$\overrightarrow a$|-|$\overrightarrow b$|;
④若sin(2x1-$\frac{π}{4}$)=sin(2x2-$\frac{π}{4}$),則x1-x2=kπ,其中k∈Z;
⑤若α、β是第一象限的角,且α>β,則sinα>sinβ.
其中正確命題的序號是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在下列向量組中,可以把向量$\overrightarrow a$=(-3,7)表示出來的是( 。
A.$\overrightarrow{e_1}=(0,1),\overrightarrow{e_2}=(0,-2)$B.$\overrightarrow{e_1}=(1,5),\overrightarrow{e_2}=(-2,-10)$
C.$\overrightarrow{e_1}=(-5,3),\overrightarrow{e_2}=(-2,1)$D.$\overrightarrow{e_1}=(7,8),\overrightarrow{e_2}=(-7,-8)$

查看答案和解析>>

同步練習(xí)冊答案