5.設(shè)f(x)=xex,若f'(x0)=0,則x0=-1.

分析 根據(jù)導(dǎo)數(shù)的運算法則求導(dǎo),再代值計算即可

解答 解:∵f(x)=xex,
∴f′(x)=(1+x)ex,
∴f'(x0)=(1+x0)ex0=0
∴x0=-1,
故答案為:-1

點評 本題考查了導(dǎo)數(shù)的運算法則和導(dǎo)數(shù)值的求法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某校高考數(shù)學(xué)成績ξ近似地服從正態(tài)分布N(100,52),且P(ξ<110)=0.96,則P(90<ξ<100)的值為(  )
A.0.49B.0.48C.0.47D.0.46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,O為坐標(biāo)原點,點P(1,$\frac{\sqrt{2}}{2}$)在橢圓上,連接PF1交y軸于點Q,點Q滿足$\overrightarrow{PQ}$=$\overrightarrow{Q{F}_{1}}$.直線l不過原點O且不平行于坐標(biāo)軸,l與橢圓C有兩個交點A,B.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點M($\frac{5}{4}$,0),若直線l過橢圓C的右焦點F2,證明:$\overrightarrow{MA}$•$\overrightarrow{MB}$為定值;
(Ⅲ)若直線l過點(0,2),設(shè)N為橢圓C上一點,且滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ$\overrightarrow{ON}$,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}是首項為2的等差數(shù)列,數(shù)列{bn}是公比為2的等比數(shù)列,且滿足a2+b3=7,a4+b5=21.
(1)求數(shù)列{an}與{bn}的通項;
(2)令${c_n}=\frac{a_n}{b_n}$,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.關(guān)于x的方程cos2x+sinx+a=0在$x∈({0,\frac{π}{2}}]$上有解,則a的取值范圍是$[{-\frac{5}{4},-1}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若$cos(α+β)=\frac{3}{5}$,$cos(α-β)=\frac{4}{5}$,則tanαtanβ=$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=f(x+1)+5是定義域為R的奇函數(shù),則f(e)+f(2-e)=-10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(Ⅰ)求不等式-2<|x-1|-|x+2|<0的解集.
(Ⅱ)設(shè)a,b,均為正數(shù),$h=max\{\frac{2}{{\sqrt{a}}},\frac{{{a^2}+{b^2}}}{{\sqrt{ab}}},\frac{2}{{\sqrt}}\}$,證明:h≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|log2x>2},$B=\{x|{(\frac{1}{2})^x}≥\frac{1}{16}\}$,則下列結(jié)論成立的是(  )
A.A∩B=AB.(∁RA)∩B=AC.A∩(∁RB)=AD.(∁RA)∩(∁RB)=A

查看答案和解析>>

同步練習(xí)冊答案