【題目】已知平面直角坐標系內(nèi)的動點P到直線的距離與到點的距離比為.
(1)求動點P所在曲線E的方程;
(2)設(shè)點Q為曲線E與軸正半軸的交點,過坐標原點O作直線,與曲線E相交于異于點的不同兩點,點C滿足,直線和分別與以C為圓心,為半徑的圓相交于點A和點B,求△QAC與△QBC的面積之比的取值范圍.
【答案】(1);(2).
【解析】
(1) 設(shè)動點P的坐標為, 由題意可得,整理可得曲線E的方程;
(2) 解法一:可得圓C方程為,設(shè)直線MQ的方程為,設(shè)直線NQ的方程為,分別與圓聯(lián)立,可得,,可得,可得,代入可得答案;
解法二:可得圓C方程為,設(shè)直線MQ的方程為,則點C到MQ的距離為, , ,設(shè)直線NQ的方程為,同理可得: ,,可得,代入可得答案.
解:(1)設(shè)動點P的坐標為,由題意可得,
整理,得:,即為所求曲線E的方程;
(2)(解法一)由已知得:,,,即圓C方程為
由題意可得直線MQ,NQ的斜率存在且不為0
設(shè)直線MQ的方程為,與聯(lián)立得:
所以,
同理,設(shè)直線NQ的方程為,與聯(lián)立得:
所以
因此
由于直線過坐標原點,所以點與點關(guān)于坐標原點對稱
設(shè),,所以,
又在曲線上,所以,即
故,
由于,所以,
(解法二)由已知得:,,,即圓C方程為
由題意可得直線MQ,NQ的斜率存在且不為0
設(shè)直線MQ的方程為,則點C到MQ的距離為
所以
于是,
設(shè)直線NQ的方程為,同理可得:
所以
由于直線l過坐標原點,所以點M與點N關(guān)于坐標原點對稱
設(shè),,所以,
又在曲線上,所以,即
故,
由于,所以,
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點為,是橢圓上半部分的動點,連接和長軸的左右兩個端點所得兩直線交正半軸于兩點(點在的上方或重合).
(1)當面積最大時,求橢圓的方程;
(2)當時,在軸上是否存在點使得為定值,若存在,求點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線C:(a>0,b>0)的離心率為,且
(1)求雙曲線C的方程;
(2)已知直線與雙曲線C交于不同的兩點A,B且線段AB的中點在圓上,求m的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,圓的參數(shù)方程為(為參數(shù)),過點作斜率為的直線與圓交于,兩點.
(1)若圓心到直線的距離為,求的值;
(2)求線段中點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學名著《九章算術(shù)》中記載了有關(guān)特殊幾何體的定義:陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,塹堵指底面是直角三角形,且側(cè)棱垂直于底面的三棱柱.
(1)某塹堵的三視圖,如圖1,網(wǎng)格中的每個小正方形的邊長為1,求該塹堵的體積;
(2)在塹堵中,如圖2,,若,當陽馬的體積最大時,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班50名學生在一次百米測試中,成績?nèi)拷橛?/span>13秒與18秒之間,將測試結(jié)果按如下方式分成五組:第一組,第二組,,第五組.下圖是按上述分組方法得到的頻率分布直方圖.按上述分組方法得到的頻率分布直方圖.
(1)若成績大于或等于14秒且小于16秒認為良好,求該班在這次百米測試中成績良好的人數(shù);
(2)設(shè)m,n表示該班某兩位同學的百米測試成績,且已知求事件“”發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點在橢圓上,橢圓的右焦點,直線過橢圓的右頂點,與橢圓交于另一點,與軸交于點.
(1)求橢圓的方程;
(2)若為弦的中點,是否存在定點,使得恒成立?若存在,求出點的坐標,若不存在,請說明理由;
(3)若,交橢圓于點,求的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:(x﹣a)2+(y﹣2)2=4(a>0)及直線l:x﹣y+3=0.當直線l被圓C截得的弦長為時,求
(Ⅰ)a的值;
(Ⅱ)求過點(3,5)并與圓C相切的切線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com