4.已知集合A={x|3≤3x≤27},B={x|log2x>1}.
(1)求A∩(∁RB);
(2)已知集合C={x|1<x<a},若C∩A=C,求實(shí)數(shù)a的取值集合.

分析 (1)由指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性分別求出集合A、B,由補(bǔ)集的運(yùn)算求出∁RB,由交集的運(yùn)算求出A∩(∁RB);
(2)由C∩A=C得C⊆A,根據(jù)條件對a分類討論,分別由子集的定義求出a的范圍,最后并在一起求出實(shí)數(shù)a的取值集合.

解答 解:(1)集合A={x|3≤3x≤27}={x|3≤3x≤33}={x|1≤x≤3},
B={x|log2x>1}={x|log2x>${log}_{2}^{2}$}={x|x>2},
∴∁RB={x|x≤2},
∴A∩(∁RB)={x|1≤x≤2};
(2)∵C∩A=C,∴C⊆A,
①當(dāng)a≤1時,C=∅,此時C⊆A;
②當(dāng)a>1時,集合C={x|1<x<a},C⊆A,
則1<a≤3,
綜上可得,實(shí)數(shù)a的取值集合是(-∞,3].

點(diǎn)評 本題考查交、并、補(bǔ)集的混合運(yùn)算,子集的定義,以及指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,考查分類討論思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若圓x2+y2=1與圓x2+y2+6x-8y+m=0相切,則m的值為-11或9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)F1,F(xiàn)2是橢圓C1:$\frac{x^2}{{{a_1}^2}}+\frac{y^2}{{{b_1}^2}}$=1(a1>b1>0)與雙曲線C2:$\frac{x^2}{{{a_2}^2}}-\frac{y^2}{{{b_2}^2}}$=1(a2>0,b2>0)的公共焦點(diǎn),曲線C1,C2在第一象限內(nèi)交于點(diǎn)M,∠F1MF2=90°,若橢圓C1的離心率e1∈[$\frac{{\sqrt{6}}}{3}$,1),則雙曲線C2的離心率e2的范圍是( 。
A.$({1,\sqrt{3}}]$B.$({1,\sqrt{2}}]$C.$[{\sqrt{3},+∞})$D.$[{\sqrt{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.“x=1”是“x2+x-2=0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.對于任意兩個向量$\overrightarrow{a}$,$\overrightarrow$,下列說法正確的是( 。
A.若$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|>|$\overrightarrow$|,且$\overrightarrow{a}$與$\overrightarrow$同向,則$\overrightarrow{a}$>$\overrightarrow$B.當(dāng)實(shí)數(shù)λ=0時,λ$\overrightarrow{a}$=0
C.|$\overrightarrow{a}$•$\overrightarrow$|≤|$\overrightarrow{a}$||$\overrightarrow$|D.|$\overrightarrow{a}$-$\overrightarrow$|≤|$\overrightarrow{a}$|-|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知f(x)是奇函數(shù),當(dāng)x>0時,f(x)=2x-a-1,若f(-1)=$\frac{3}{4}$,則a等于( 。
A.1B.-1C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知定義在R上的函數(shù)f(x)滿足f(4+x)=f(x),且x∈(-2,2]時,f(x)=$\left\{\begin{array}{l}{\frac{1}{2}(|x+\frac{1}{x}|-|x-\frac{1}{x}|),0<x≤2}\\{-({x}^{2}+2x),-2<x≤0}\end{array}\right.$則函數(shù)g(x)=f(x)-|log4|x||的零點(diǎn)個數(shù)是( 。
A.4B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若命題:“?x∈R,使得ax2+(a-3)x+1<0”為假命題.則實(shí)數(shù)a的范圍為( 。
A.0<a≤1或a≥9B.a≤1或a≥9C.1≤a≤9D.a≥9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}為等差數(shù)列,且a1+a7+a13=4π,則cos(a2+a12)=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案