14.已知數(shù)列{an}為等差數(shù)列,且a1+a7+a13=4π,則cos(a2+a12)=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

分析 由等差數(shù)列的性質化簡a1+a7+a13=4π,并求出a7的值,代入所求的式子后,由等差數(shù)列的性質、誘導公式化簡后求值.

解答 解:∵數(shù)列{an}為等差數(shù)列,且a1+a7+a13=4π,
∴3a7=4π,解得a7=$\frac{4π}{3}$,
∴cos(a2+a12)=cos2a7=cos$\frac{8π}{3}$=cos(2π+$\frac{2π}{3}$)
=cos $\frac{2π}{3}$=$-\frac{1}{2}$,
故選:B.

點評 本題考查等差數(shù)列的性質,以及誘導公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知集合A={x|3≤3x≤27},B={x|log2x>1}.
(1)求A∩(∁RB);
(2)已知集合C={x|1<x<a},若C∩A=C,求實數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知命題p:?m∈[-1,1],不等式a2-5a+7≥m+2恒成立;命題q:x2+ax=2=0有兩個不同的實數(shù)根,若p∨q為真,且p∧q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,已知四棱錐S-ABCD的底面為矩形且SA⊥底面ABCD,若側棱SC=5$\sqrt{2}$,則此四棱錐的外接球表面積為( 。
A.25πB.50πC.100πD.200π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$是共面的三個向量,其中$\overrightarrow{a}$=($\sqrt{2}$,2),|$\overrightarrow$|=2$\sqrt{3}$,|$\overrightarrow{c}$|=2$\sqrt{6}$,$\overrightarrow{a}$∥$\overrightarrow{c}$.
(Ⅰ)求|$\overrightarrow{c}$-$\overrightarrow{a}$|;
(Ⅱ)若$\overrightarrow{a}$-$\overrightarrow$與3$\overrightarrow{a}$+2$\overrightarrow$垂直,求$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.直線x-y=0被圓x2+y2=1截得的弦長為(  )
A.$\sqrt{2}$B.1C.4D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合A={x|log${\;}_{\frac{1}{2}}$x>-1},B=|x|2x>$\sqrt{2}$|,則A∪B=( 。
A.($\frac{1}{2}$,2)B.($\frac{1}{2}$,+∞)C.(0,+∞)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,四棱柱ABCD-A1B1C1D1的底面ABCD為矩形,平面CDD1C1⊥平面ABCD,E,F(xiàn)分別是CD,AB的中點,求證:
(1)AD⊥CD;
(2)EF∥平面ADD1A1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知p:冪函數(shù)y=(m2-m-1)xm在(0,+∞)上單調(diào)遞增;q:|m-2|<1,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不要條件

查看答案和解析>>

同步練習冊答案