【題目】2020年春季受新冠肺炎疫情的影響,利用網(wǎng)絡(luò)軟件辦公與學(xué)習(xí)成為了一種新的生活方式,網(wǎng)上辦公軟件的開發(fā)與使用成為了一個(gè)熱門話題.為了解釘釘軟件的使用情況,釘釘公司借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到下表(單位:人):

經(jīng)常使用

偶爾或不用

合計(jì)

35歲及以下

70

30

100

35歲以上

60

40

100

合計(jì)

130

70

200

1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為釘釘軟件的使用情況與年齡有關(guān)?

2)現(xiàn)從所抽取的35歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5.從這5人中,再隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用釘釘軟件的概率.

參考公式:,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】1)能在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為釘釘軟件的使用情況與年齡有關(guān).

2

【解析】

(1)根據(jù)列聯(lián)表計(jì)算,再比較參考數(shù)據(jù)即可得到答案.

2)首先利用分層抽樣得到經(jīng)常使用“釘釘”軟件和偶爾或不用“釘釘”軟件的人數(shù),再利用古典概型公式即可得到答案.

1)由列聯(lián)表可得:.

所以能在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為釘釘軟件的使用情況與年齡有關(guān).

2)依題意可得,在每層中所抽取的比例為,

所以從經(jīng)常使用“釘釘”軟件的人中抽取(人),

從偶爾或不用“釘釘”軟件的人中抽取(人).

設(shè)這5人中,經(jīng)常使用“釘釘”軟件的3人分別為,;

偶爾或不用“釘釘”軟件的2人分別為,

則從5人中選出2人的所有可能結(jié)果為:,,,,,,,,共10種.

選出的2人中沒有1人經(jīng)常使用釘釘軟件的可能結(jié)果為,共1.

故選出的2人中至少有1人經(jīng)常使用“釘釘”軟件的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一塊以點(diǎn)為圓心,半徑為百米的圓形草坪,草坪內(nèi)距離點(diǎn)百米的點(diǎn)有一用于灌溉的水籠頭,現(xiàn)準(zhǔn)備過點(diǎn)修一條筆直小路交草坪圓周于兩點(diǎn),為了方便居民散步,同時(shí)修建小路,其中小路的寬度忽略不計(jì).

1)若要使修建的小路的費(fèi)用最省,試求小路的最短長(zhǎng)度;

2)若要在區(qū)域內(nèi)(含邊界)規(guī)劃出一塊圓形的場(chǎng)地用于老年人跳廣場(chǎng)舞,試求這塊圓形廣場(chǎng)的最大面積.(結(jié)果保留根號(hào)和)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“綠水青山就是金山銀山”的理念越來越深入人心,據(jù)此,某網(wǎng)站調(diào)查了人們對(duì)生態(tài)文明建設(shè)的關(guān)注情況,調(diào)查數(shù)據(jù)表明,參與調(diào)查的人員中關(guān)注生態(tài)文明建設(shè)的約占80%.現(xiàn)從參與調(diào)查的關(guān)注生態(tài)文明建設(shè)的人員中隨機(jī)選出200人,并將這200人按年齡(單位:歲)分組:第1[15,25),第2[25,35),第3[35,45),第4[45,55),第5[5565],得到的頻率分布直方圖如圖所示.

(Ⅰ)求這200人的平均年齡(每一組用該組區(qū)間的中點(diǎn)值作為代表)和年齡的中位數(shù)(保留一位小數(shù));

(Ⅱ)現(xiàn)在要從年齡在第1,2組的人員中用分層抽樣的方法抽取5人,再?gòu)倪@5人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,求抽取的3人中恰有2人的年齡在第2組中的概率;

(Ⅲ)若從所有參與調(diào)查的人(人數(shù)很多)中任意選出3人,設(shè)這3人中關(guān)注生態(tài)文明建設(shè)的人數(shù)為X,求隨機(jī)變量X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),是橢圓的兩個(gè)焦點(diǎn),過,分別作直線,且,若與橢圓交于兩點(diǎn),與橢圓交于兩點(diǎn)(點(diǎn)軸上方),則四邊形面積的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某企業(yè)中隨機(jī)抽取了5名員工測(cè)試他們的藝術(shù)愛好指數(shù)和創(chuàng)新靈感指數(shù),統(tǒng)計(jì)結(jié)果如下表(注:指數(shù)值越高素質(zhì)越優(yōu)秀):

1)求創(chuàng)新靈感指數(shù)關(guān)于藝術(shù)愛好指數(shù)的線性回歸方程;

2)企業(yè)為提高員工的藝術(shù)愛好指數(shù),要求員工選擇音樂和繪畫中的一種進(jìn)行培訓(xùn),培訓(xùn)音樂次數(shù)對(duì)藝術(shù)愛好指數(shù)的提高量為,培訓(xùn)繪畫次數(shù)對(duì)藝術(shù)愛好指數(shù)的提高量為,其中為參加培訓(xùn)的某員工已達(dá)到的藝術(shù)愛好指數(shù).藝術(shù)愛好指數(shù)已達(dá)到3的員工甲選擇參加音樂培訓(xùn),藝術(shù)愛好指數(shù)已達(dá)到4的員工乙選擇參加繪畫培訓(xùn),在他們都培訓(xùn)了20次后,估計(jì)誰的創(chuàng)新靈感指數(shù)更高?

參考公式:回歸方程中,,.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)古代數(shù)學(xué)經(jīng)典《數(shù)書九章》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱為陽馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,以的中點(diǎn)O為球心,AC為直徑的球面交PDM(異于點(diǎn)D),交PCN(異于點(diǎn)C.

1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個(gè)面的直角(只需寫出結(jié)論);若不是,請(qǐng)說明理由;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為F,直線lC交于M,N兩點(diǎn).

1)若l過點(diǎn)F,點(diǎn)MN到直線y2的距離分別為d1,d2,且,求l的方程;

2)若點(diǎn)M的坐標(biāo)為(0,1),直線m過點(diǎn)MC于另一點(diǎn)N′,當(dāng)直線lm的斜率之和為2時(shí),證明:直線NN′過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為4,右焦點(diǎn)為,且橢圓上的點(diǎn)到點(diǎn)的距離的最小值與最大值的積為1,圓軸交于兩點(diǎn).

1)求橢圓的方程;

2)動(dòng)直線與橢圓交于兩點(diǎn),且直線與圓相切,求的面積與的面積乘積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列命題:

①函數(shù)上單調(diào)遞減,在上單調(diào)遞增;

②若函數(shù)上有兩個(gè)零點(diǎn),則的取值范圍是;

③當(dāng)時(shí),函數(shù)的最大值為0;

④函數(shù)上單調(diào)遞減;

上述命題正確的是_________(填序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案