使不等式
2
-2sinx≥0成立的x的取值集合是( 。
A、{x|2kπ+
π
4
≤x≤2kπ+
4
,k∈Z}
B、{x|2kπ+
π
4
≤x≤2kπ+
4
,k∈Z}
C、{x|2kπ-
4
≤x≤2kπ+
π
4
,k∈Z}
D、{x|2kπ+
4
≤x≤2kπ+
4
,k∈Z}
考點(diǎn):正弦函數(shù)的單調(diào)性
專題:三角函數(shù)的圖像與性質(zhì)
分析:首先對(duì)三角不等式進(jìn)行恒等變換,變換成sinx
2
2
,進(jìn)一步利用單位圓求解.
解答: 解:
2
-2sinx≥0
解得:sinx
2
2

進(jìn)一步利用單位圓解得:2kπ-
4
≤x≤2kπ+
π
4
(k∈Z)
故選:C
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):利用單位元解三角不等式,特殊角的三角函數(shù)值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=4x2,則此拋物線的準(zhǔn)線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
OA
=(1,0),
OB
=(0,1),
OM
=(t,t)(t∈R),O是坐標(biāo)原點(diǎn).
(Ⅰ)若點(diǎn)A,B,M三點(diǎn)共線,求t的值;
(Ⅱ)當(dāng)t取何值時(shí),
MA
MB
取到最小值?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,2),B(3,2),以線段AB為直徑作圓C,則直線l:x+y-3=0與圓C的位置關(guān)系是( 。
A、相交且過圓心B、相交但不過圓心
C、相切D、相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(2x+φ),(A>0,|φ|<
π
2
)的部分圖象過點(diǎn)(0,2),如圖所示,則函數(shù)f(
π
2
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在邊長為2的菱形ABCD中,∠BAD=120°,則
AC
AB
方向上的投影為( 。
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是周期為2的奇函數(shù),當(dāng)0<x<1時(shí),f(x)=log2x,則f(-
5
2
)=( 。
A、0
B、
1
2
C、1
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=x2-(a-1)x+3在區(qū)間(4,+∞)上是增函數(shù),那么實(shí)數(shù)a的取值范圍是( 。
A、(-∞,9]
B、[5,+∞)
C、[9,+∞)
D、(-∞,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(2x+
π
3
)+sin(2x-
π
3
),g(x)=
3
cos2x.
(Ⅰ)設(shè)h(x)=f(x)g(x),求函數(shù)h(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若一動(dòng)直線x=t與函數(shù)y=f(x),y=g(x)的圖象分別交于M,N兩點(diǎn),求|MN|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案