【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面.

(1)求證:平面;

(2)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長.

【答案】(1)證明見解析;(2)存在,2.

【解析】

1)根據(jù)題意,建立空間直角坐標系,寫出各個點的坐標.得平面的法向量,求得與法向量的數(shù)量積,即可證明平面;

2)假設存在點滿足題意,表示出的坐標和點坐標.利用直線與平面所成角的正弦值為,可由向量的夾角運算求得的值,進而表示出求得即可.

1)證明:設中點為.取為原點,所在直線為,所在直線為,所在直線為軸建立空間直角坐標系,如下圖所示:

,,,,

,,

設平面的法向量為,

不妨設,

,

.

,

平面,

平面.

2)設,,

,

,

平面的一個法向量為,

,

,,

,,,

,,,

綜上.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱ABCA1B1C1中,側棱垂直于底面,∠ACB90°,ACBCAA1,D是棱AA1的中點.

(1)證明:平面BDC1⊥平面BDC;

(2)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,離心率為 為坐標原點.

I)求橢圓的方程.

II)若點為橢圓上一動點,點與點的垂直平分線l交軸于點,的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢)過點,且橢圓的離心率為.過橢圓左焦點且斜率為1的直線與橢圓交于,兩點.

1)求橢圓的方程;

2)求線段的垂直平分線的方程;

3)求三角形的面積.為坐標原點)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓上的點,直線交橢圓于不同的兩點,.

1)求的取值范圍;

2)若直線不過點,直線的斜率為,求直線的斜率;

3)若直線不過點,直線的斜率為,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓:過點和點.

Ⅰ)求橢圓的方程;

Ⅱ)設直線與橢圓相交于不同的兩點, ,是否存在實數(shù),使得?若存在,求出實數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

(1)求函數(shù)的極值;

(2),對于任意,總有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,為常數(shù)),當時,只有一個實根;當時,只有3個相異實根,現(xiàn)給出下列4個命題:

有一個相同的實根;

有一個相同的實根;

的任一實根大于的任一實根;

的任一實根小于的任一實根.

其中真命題的序號是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線Ca0),過點P(-2,-4)的直線l的參數(shù)方程為t為參數(shù)),lC分別交于M,N.

1)寫出C的平面直角坐標系方程和l的普通方程;

2)若|PM|,|MN||PN|成等比數(shù)列,求a的值.

查看答案和解析>>

同步練習冊答案