【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面.
(1)求證:平面;
(2)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱ABC-A1B1C1中,側棱垂直于底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點.
(1)證明:平面BDC1⊥平面BDC;
(2)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點,離心率為, 為坐標原點.
(I)求橢圓的方程.
(II)若點為橢圓上一動點,點與點的垂直平分線l交軸于點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢:()過點,且橢圓的離心率為.過橢圓左焦點且斜率為1的直線與橢圓交于,兩點.
(1)求橢圓的方程;
(2)求線段的垂直平分線的方程;
(3)求三角形的面積.(為坐標原點)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是橢圓:上的點,直線:交橢圓于不同的兩點,.
(1)求的取值范圍;
(2)若直線不過點,直線的斜率為,求直線的斜率;
(3)若直線不過點,直線的斜率為,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:過點和點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓相交于不同的兩點, ,是否存在實數(shù),使得?若存在,求出實數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,,為常數(shù)),當時,只有一個實根;當時,只有3個相異實根,現(xiàn)給出下列4個命題:
①和有一個相同的實根;
②和有一個相同的實根;
③的任一實根大于的任一實根;
④的任一實根小于的任一實根.
其中真命題的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:(a>0),過點P(-2,-4)的直線l的參數(shù)方程為(t為參數(shù)),l與C分別交于M,N.
(1)寫出C的平面直角坐標系方程和l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com