【題目】已知函數(shù),.
(1)求曲線在點(diǎn)處的切線方程;(2)求函數(shù)在上的最大值;
(3)求證:存在唯一的,使得.
【答案】(1);(2)6;(3)見(jiàn)解析
【解析】試題分析:(Ⅰ)根據(jù)導(dǎo)數(shù)的幾何意義求切線斜率,寫出切線方程;(Ⅱ)寫出函數(shù)在區(qū)間上導(dǎo)數(shù)的變化情況,列表求最值即可;(Ⅲ)構(gòu)造函數(shù)=,只需證明函數(shù)有唯一零點(diǎn)即可.
試題解析:(Ⅰ)由,得 ,
所以,又
所以曲線在點(diǎn)處的切線方程為:,即:.
(Ⅱ)令,得.
與在區(qū)間的情況如下:
- | 0 | + | |
極小值 |
因?yàn)?/span> 所以函數(shù)在區(qū)間上的最大值為6.
(Ⅲ)證明:設(shè)=,
則,
令,得.
與隨x的變化情況如下:
1 | |||||
0 | 0 | ||||
極大值 | 極小值 |
則的增區(qū)間為,,減區(qū)間為.
又,,所以函數(shù)在沒(méi)有零點(diǎn),又,
所以函數(shù)在上有唯一零點(diǎn).
綜上,在上存在唯一的,使得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知奇函數(shù)f(x)是定義在R上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),當(dāng)x>0時(shí)有2f(x)+xf′(x)>x2 , 則不等式(x+2014)2f(x+2014)+4f(﹣2)<0的解集為( )
A.(﹣∞,﹣2012)
B.(﹣2016,﹣2012)
C.(﹣∞,﹣2016)
D.(﹣2016,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的不等式在上恒成立,求的取值范圍;
(2)設(shè)函數(shù),若在上有兩個(gè)不同極值點(diǎn),求的取值范圍,并判斷極值的正負(fù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是在豎直平面內(nèi)的一個(gè)“通道游戲”.圖中豎直線段和斜線段都表示通道,并且在交點(diǎn)處相遇,若豎直線段有第一條的為第一層,有二條的為第二層,…,依此類推.現(xiàn)有一顆小彈子從第一層的通道里向下運(yùn)動(dòng).若在通道的分叉處,小彈子以相同的概率落入每個(gè)通道,記小彈子落入第n層第m個(gè)豎直通道(從左至右)的概率為P(n,m).某研究性學(xué)習(xí)小組經(jīng)探究發(fā)現(xiàn)小彈子落入第n層的第m個(gè)通道的次數(shù)服從二項(xiàng)分布,請(qǐng)你解決下列問(wèn)題.
(1)求P(2,1),P(3,2)及P(4,2)的值,并猜想P(n,m)的表達(dá)式.(不必證明)
(2)設(shè)小彈子落入第6層第m個(gè)豎直通道得到分?jǐn)?shù)為ξ,其中ξ= ,試求ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,試確定實(shí)數(shù)的取值范圍;
(3)證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0,其中a<0,q:實(shí)數(shù)x滿足x2﹣x﹣6≤0或x2+2x﹣8>0,且非p是非q的必要不充分條件,則實(shí)數(shù)a的范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在統(tǒng)計(jì)學(xué)中,偏差是指?jìng)(gè)別測(cè)定值與測(cè)定的平均值之差,在成績(jī)統(tǒng)計(jì)中,我們把某個(gè)同學(xué)的某刻考試成績(jī)與該科班平均分的差叫某科偏差,班主任為了了解個(gè)別學(xué)生的偏科情況,對(duì)學(xué)生數(shù)學(xué)偏差(單位:分)與物理偏差(單位:分)之間的關(guān)系進(jìn)行偏差分析,決定從全班40位同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析,得到他們的兩科成績(jī)偏差數(shù)據(jù)如表:
(1)已知與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;
(2)若這次考試該班數(shù)學(xué)平均分為120分,物理平均分為92,試預(yù)測(cè)數(shù)學(xué)成績(jī)126分的同學(xué)的物理成績(jī).
參考公式: ,
參考數(shù)據(jù): ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的函數(shù) .
(1)如果函數(shù) ,求b、c;
(2)設(shè)當(dāng)x∈( ,3)時(shí),函數(shù)y=f(x)﹣c(x+b)的圖象上任一點(diǎn)P處的切線斜率為k,若k≤2,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在點(diǎn)處的切線為.
(1)求實(shí)數(shù), 的值;
(2)是否存在實(shí)數(shù),當(dāng)時(shí),函數(shù)的最小值為,若存在,求出的取值范圍;若不存在,說(shuō)明理由;
(3)若,求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com