【題目】如圖,在平面直角坐標系中,已知分別是橢圓()的左右焦點,點是橢圓上一點,且.若橢圓的內(nèi)接四邊形的邊的延長線交于橢圓外一點,且點的橫坐標為1,記直線的斜率分別為.

1)求橢圓的標準方程;

2)若,求的值.

【答案】1.(2

【解析】

1)求橢圓定義可知,代入即可得出結(jié)果;

2)設(shè),,因為的延長線交于橢圓外一點,且點的橫坐標為1,于是有,將直線與橢圓方程聯(lián)立,結(jié)合韋達定理及弦長公式可求得,,根據(jù)已知條件化簡即可得出結(jié)果.

1,

是橢圓上一點,代入方程:,∴

∴橢圓的標準方程:

2)設(shè),

的延長線交于橢圓外一點,且點的橫坐標為1,于是有

于是:

代入②可得

同理

,可得:

法二:(1)由為橢圓的左右焦點,上一點,

,∴,∴橢圓

代入可得

∴橢圓的標準方程為

2)設(shè),由斜率分別為

則直線的方程分別為

聯(lián)立,設(shè)

由韋達定理,

同理可證

則由,得

從而

,∴

的內(nèi)接四邊形,∴,∴

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+4[sin(θ+)]x2,θ∈[0,2π].

)若函數(shù)f(x)為偶函數(shù),求tanθ的值;

)若f(x)在[,1]上是單調(diào)函數(shù),求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019925.阿里巴巴在杭州云棲大會上正式對外發(fā)布了含光800AI芯片,在業(yè)界標準的ResNet -50測試中,含光800推理性能達到78563lPS,比目前業(yè)界最好的AI芯片性能高4;能效比500 IPS/W,是第二名的3.3.在國內(nèi)集成電路產(chǎn)業(yè)發(fā)展中,集成電路設(shè)計產(chǎn)業(yè)始終是國內(nèi)集成電路產(chǎn)業(yè)中最具發(fā)展活力的領(lǐng)域,增長也最為迅速.如圖是2014-2018年中國集成電路設(shè)計產(chǎn)業(yè)的銷售額(億元)及其增速(%)的統(tǒng)計圖,則下面結(jié)論中正確的是( )

A.2014-2018,中國集成電路設(shè)計產(chǎn)業(yè)的銷售額逐年增加

B.2014-2017,中國集成電路設(shè)計產(chǎn)業(yè)的銷售額增速逐年下降

C.2018年中國集成電路設(shè)計產(chǎn)業(yè)的銷售額的增長率比2015年的高

D.2018年與2014年相比,中國集成電路設(shè)計產(chǎn)業(yè)銷售額的增長率約為110%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知O為坐標原點,拋物線E的方程為x22pyp0),其焦點為F,過點M 0,4)的直線與拋物線相交于P、Q兩點且OPQ為以O為直角頂點的直角三角形.

(Ⅰ)求E的方程;

(Ⅱ)設(shè)點N為曲線E上的任意一點,證明:以FN為直徑的圓與x軸相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年春節(jié)期間,我國高速公路繼續(xù)執(zhí)行節(jié)假日高速公路免費政策某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速公路收費點記錄了大年初三上午9:20~10:40這一時間段內(nèi)通過的車輛數(shù),統(tǒng)計發(fā)現(xiàn)這一時間段內(nèi)共有600輛車通過該收費點,它們通過該收費點的時刻的頻率分布直方圖如下圖所示,其中時間段9:20~9:40記作區(qū)間,9:40~10:00記作10:00~10:20記作,10:20~10:40記作.例如:1004分,記作時刻64.

1)估計這600輛車在9:20~10:40時間段內(nèi)通過該收費點的時刻的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

2)為了對數(shù)據(jù)進行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機抽取4輛,設(shè)抽到的4輛車中,在9:20~10:00之間通過的車輛數(shù)為X,求X的分布列與數(shù)學期望;

3)由大數(shù)據(jù)分析可知,車輛在每天通過該收費點的時刻T服從正態(tài)分布,其中可用這600輛車在9:20~10:40之間通過該收費點的時刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表),已知大年初五全天共有1000輛車通過該收費點,估計在9:46~10:40之間通過的車輛數(shù)(結(jié)果保留到整數(shù)).

參考數(shù)據(jù):若,則,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的左、右焦點分別為F1、F2,過點F1作圓x2+y2a2的切線交雙曲線右支于點M,若tanF1MF22,又e為雙曲線的離心率,則e2的值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,將曲線方程,先向左平移2個單位,再向上平移2個單位,得到曲線C.

1)點Mx,y)為曲線C上任意一點,寫出曲線C的參數(shù)方程,并求出的最大值;

2)設(shè)直線l的參數(shù)方程為,(t為參數(shù)),又直線l與曲線C的交點為E,F,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段EF的中點且與l垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知平面平面為等邊三角形,的中點.

1)求證:平面平面;

2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)和函數(shù),關(guān)于這兩個函數(shù)圖像的交點個數(shù),下列四個結(jié)論:①當時,兩個函數(shù)圖像沒有交點;②當時,兩個函數(shù)圖像恰有三個交點;③當時,兩個函數(shù)圖像恰有兩個交點;④當時,兩個函數(shù)圖像恰有四個交點.正確結(jié)論的個數(shù)為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案