已知集合M={y|y=3-x2,x∈R},N={x|y=
(
1
2
)x-1
},則M∩(∁UN)=( 。
A、(-∞,0)B、[0,3)
C、(0,3]D、∅
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:求出集合M,N,根據(jù)集合的基本運(yùn)算進(jìn)行求解即可.
解答: 解:M={y|y=3-x2,x∈R}={y|y≤3},N={x|y=
(
1
2
)x-1
}={x|x≤0},
則∁UN={x|x>0},
即M∩(∁UN)={x|0<x≤3},
故選:C
點(diǎn)評(píng):本題主要考查集合的基本運(yùn)算,求出集合M,N的等價(jià)條件是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

王明接到快遞公司電話,說(shuō)他的包裹可能在11:30~12:30送到辦公室,但王明按慣例離開辦公室的時(shí)間是12:00~13:00之間,則他離開辦公室前能得到包裹的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)所給條件求直線l的方程.
(1)直線l經(jīng)過(guò)圓x2+y2+2y=0的圓心,且與直線2x+y=0垂直;
(2)直線l過(guò)點(diǎn)(-4,8),且到原點(diǎn)的距離為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“?x0∈R,使得2x0≤4”的否定是(  )
A、?x∈R,使得2x>4
B、?x0∈R,使得2x0≥4
C、?x∈R,使得2x<4
D、?x0∈R,使得2x0>4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C:y=
1-x2
和直線l:y=x-a,若曲線C和直線l有且僅有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩點(diǎn)A(1,0),B(-1,
3
),O為坐標(biāo)原點(diǎn),點(diǎn)C在第二象限,且∠AOC=135°,設(shè)
OC
=-
OA
OB
(λ∈R),則實(shí)數(shù)λ等于( 。
A、
3
+1
2
B、
3
-1
2
C、
2
-1
2
D、
2
+1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sin(ωx+φ)(x∈R)(ω>0,|φ|<
π
2
)的部分圖象如圖所示,如果x1,x2∈(-
π
6
,
π
3
),且f(x1)=f(x2),則f(x1+x2)等于( 。
A、
1
2
B、
3
2
C、
2
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

與圓x2+(y+5)2=9相切,且在兩坐標(biāo)軸上截距相等的直線共有( 。l.
A、2B、3C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,光線從點(diǎn)A(2,1)出發(fā),到x軸上的點(diǎn) B后,被x軸反射到y(tǒng)軸上的
C點(diǎn),又被y軸反射,這時(shí)反射線恰好經(jīng)過(guò)點(diǎn)D(1,2).
(1)求直線BC的方程;
(2)求線段BC的中垂線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案