在四面體中,AB,AC,AD兩兩垂直,AB=,AD=2,AC=,則該四面體外接球的表面積為            

 

【答案】

【解析】

試題分析:方法一:設(shè) 為球心,因為 所以所在截面圓的直徑為 ,取中點,則 為截面圓圓心,所以圓面,又 所以圓面,所以  ∥ 又所以  四邊形 是平行四邊形 ,所以 ,在直角三角形中,,所以  .

方法二:由球的對稱性及兩兩垂直可以補形為長方體,長方體的對稱中心即為球心, 所以所以  . 

           

考點:球及線面關(guān)系的應(yīng)用.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四面體ABCD中,AB⊥平面ACD,BC=BD=5,AC=4,CD=4
2

(Ⅰ)求該四面體的體積;
(Ⅱ)求二面角A-BC-D大小的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,如果點A在BC邊上的射影是D,△ABC的三邊BC、AC、AB的長依次是a、b、c,則a=b•cosC+c•cosb,類比這一結(jié)論,推廣到空間:在四面體P-ABC中,△ABC、△PAB、△PBC、△PCA的面積依次為S、S1、S2、S3,二面角P-AB-C、P-BC-A、P-CA-B的度數(shù)依次為α、β、γ,則S=
S1cosα+S2cosβ+S3cosγ
S1cosα+S2cosβ+S3cosγ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省黃岡中學(xué)高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

在△ABC中,如果點A在BC邊上的射影是D,△ABC的三邊BC、AC、AB的長依次是a、b、c,則a=b•cosC+c•cosb,類比這一結(jié)論,推廣到空間:在四面體P-ABC中,△ABC、△PAB、△PBC、△PCA的面積依次為S、S1、S2、S3,二面角P-AB-C、P-BC-A、P-CA-B的度數(shù)依次為α、β、γ,則S=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年安徽省合肥市肥西中學(xué)高考數(shù)學(xué)模擬試卷1(文理合卷)(解析版) 題型:解答題

在△ABC中,如果點A在BC邊上的射影是D,△ABC的三邊BC、AC、AB的長依次是a、b、c,則a=b•cosC+c•cosb,類比這一結(jié)論,推廣到空間:在四面體P-ABC中,△ABC、△PAB、△PBC、△PCA的面積依次為S、S1、S2、S3,二面角P-AB-C、P-BC-A、P-CA-B的度數(shù)依次為α、β、γ,則S=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省南充高中08-09學(xué)年高二下學(xué)期第四次月考(理) 題型:解答題

 如圖甲,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點C為圓周上異于A、B的一點.

(1)若一個面體中有個面是直角三角形,則稱這個面體的直度為.那么四面體的直度為多少?說明理由;

(2)在四面體中,,設(shè).若動點在四面體 表面上運動,并且總保持.設(shè)為動點的軌跡圍成的封閉圖形的面積關(guān)于角的函數(shù),求取最大值時,二面角的正切值.

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案