10.已知集合,A={小于9的正整數(shù)},B={x|3≤x≤6,且x∈Z}
求A∩B,A∪B,(∁ZA)∩B.

分析 化簡集合A與B,根據(jù)交集、并集與補(bǔ)集的定義進(jìn)行計(jì)算即可.

解答 解:A={小于9的正整數(shù)}={1,2,3,4,5,6,7,8},
B={x|3≤x≤6,且x∈Z}={3,4,5,6};
∴A∩B={3,4,5,6},
A∪B={1,2,3,4,5,6,7,8},
(∁ZA)∩B=∅.

點(diǎn)評 本題考查了集合的化簡與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知集合A={-1,a},B={3a,b},若A∪B={-1,0,1},則a=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓的焦點(diǎn)坐標(biāo)是F1(-1,0),F(xiàn)2(1,0),過點(diǎn)F2垂直于長軸的直線交橢圓與P,Q兩點(diǎn),且|PQ|=3.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知A(2,0),B(0,$\sqrt{3}$),C為橢圓上在第一象限的一點(diǎn),O為坐標(biāo)原點(diǎn),求四邊形OACB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.cos735°=(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)$f(x)=sin({5x+\frac{π}{6}})$,x∈R.的初相為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)m∈R,過定點(diǎn)A的動(dòng)直線x+my+m=0和過定點(diǎn)B的動(dòng)直線mx-y-m+2=0交于點(diǎn)P(x,y),則|PA|+|PB|的取值范圍是( 。
A.$[{\sqrt{5},2\sqrt{5}}]$B.$[{\sqrt{10},2\sqrt{5}}]$C.$[{\sqrt{10},4\sqrt{5}}]$D.$[{2\sqrt{5},4\sqrt{5}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.以N(1,3)為圓心,并且與直線3x-4y-7=0相切的圓的標(biāo)準(zhǔn)方程為${(x-1)^2}+{(y-3)^2}=\frac{256}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.解下列不等式
(1)x2+x-2≤0
(2)$\frac{x-1}{(x-2)(x-3)}≥0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知甲船位于A處時(shí)獲悉,在其正東方向相距20海里的B處有一艘漁船遇險(xiǎn)等待營救.甲船立即前往救援,同時(shí)把消息告知在甲船的南偏西30°,相距10海里的C處的乙船,已知乙船行駛的速度是每小時(shí)20$\sqrt{7}$海里,試問:乙船沿直線方向前往救援需要花多少時(shí)間?

查看答案和解析>>

同步練習(xí)冊答案