分析 由正弦定理化簡已知的等式,得到關(guān)于a,b及c的關(guān)系式,然后再利用余弦定理表示出cosA,利用同角三角函數(shù)基本關(guān)系式可求sinA,進而利用三角形面積公式可求bc的值,利用余弦定理,基本不等式可求a的最小值,結(jié)合三角形面積公式即可得解BC邊上的高的最大值.
解答 解:∵$3({{{sin}^2}B+{{sin}^2}C-{{sin}^2}A})=2\sqrt{3}sinBsinC$,
∴根據(jù)正弦定理化簡已知等式得:3b2+3c2-3a2=2$\sqrt{3}$bc,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\frac{2\sqrt{3}bc}{3}}{2bc}$=$\frac{\sqrt{3}}{3}$,可得:sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{6}}{3}$,
∵△ABC的面積為$\sqrt{6}+\sqrt{2}$=$\frac{1}{2}$bcsinA=bc×$\frac{1}{2}×\frac{\sqrt{6}}{3}$,
∴解得:bc=6+2$\sqrt{3}$,
又∵由余弦定理可得:a=$\sqrt{^{2}+{c}^{2}-2bccosA}$=$\sqrt{^{2}+{c}^{2}-2×bc×(\frac{\sqrt{3}}{3})}$≥$\sqrt{2bc-\frac{2\sqrt{3}}{3}bc}$=2$\sqrt{2}$,(當且僅當b=c等號成立)
∴BC邊上的高h=$\frac{2S}{a}$≤$\frac{2(\sqrt{6}+\sqrt{2})}{2\sqrt{2}}$=$\sqrt{3}+1$,(當且僅當b=c等號成立).
∴BC邊上的高的最大值為$\sqrt{3}+1$.
故答案為:$\sqrt{3}+1$.
點評 本題主要考查了正弦定理,余弦定理,同角三角函數(shù)基本關(guān)系式,三角形面積公式,基本不等式在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,熟練掌握定理是解本題的關(guān)鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{25}{16}$ | B. | $\frac{55}{16}$ | C. | 35 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $2π+\sqrt{3}$ | B. | $π+\sqrt{3}$ | C. | $π+\frac{{4\sqrt{3}}}{3}$ | D. | $π+\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | $\frac{4}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com