19.某幾何體的三視圖如圖所示(圖中網(wǎng)格的邊長為1個單位),其中俯視圖為扇形,則該幾何體的體積為(  )
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.$\frac{14π}{3}$D.$\frac{16π}{9}$

分析 根據(jù)三視圖判斷幾何體是圓錐的一部分,再根據(jù)俯視圖與左視圖的數(shù)據(jù)可求得底面扇形的圓心角為120°,又由側(cè)視圖知幾何體的高為3,底面圓的半徑為2,把數(shù)據(jù)代入圓錐的體積公式計算.

解答 解:由三視圖知幾何體是圓錐的一部分,
由正視圖可得:底面扇形的圓心角為120°,
又由側(cè)視圖知幾何體的高為3,底面圓的半徑為2,
∴幾何體的體積V=$\frac{120}{360}$×$\frac{1}{3}$×π×22×3=$\frac{4π}{3}$.
故選:B.

點評 本題考查的知識點是由三視圖求體積,其中根據(jù)已知的三視圖分析出幾何體的形狀是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知i為虛數(shù)單位,則$\frac{(2+i)^{2}}{i}$=(  )
A.4-3iB.4+3iC.3-4iD.3+4i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知$sinα=\frac{5}{13},cos(α+β)=\frac{3}{5}$,(α、β為銳角),求cosβ,cos(2α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.圓x2+y2=4與圓x2+y2-4x+4y-12=0的公共弦所在直線和兩坐標軸所圍成的面積為(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在如圖所示的矩形ABCD中,AB=2,AD=1,E為線段BC上的點,則$\overrightarrow{AE}•\overrightarrow{DE}$的最小值為( 。
A.2B.$\frac{15}{4}$C.$\frac{17}{4}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)$f(x)=\frac{xlnx}{x-1}-a(a<0)$.
(Ⅰ)當x∈(0,1)時,求f(x)的單調(diào)性;
(Ⅱ)若h(x)=(x2-x)•f(x),且方程h(x)=m有兩個不相等的實數(shù)根x1,x2.求證:x1+x2>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=x(x-c)2在x=3處有極小值,則c的值是( 。
A.3或9B.9C.3D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知實數(shù)4、m、16構(gòu)成一個等比數(shù)列,則圓錐曲線$\frac{x^2}{m}+{y^2}=1$的離心率為( 。
A.3B.$\frac{{\sqrt{14}}}{4}$C.$\sqrt{3}$或 $\frac{{\sqrt{14}}}{4}$D.$\frac{{\sqrt{14}}}{4}$或3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知等差數(shù)列{an}中,a1+a3+a5=9,a6=-9,該數(shù)列前n項和最大?最大值是多少?

查看答案和解析>>

同步練習冊答案