8.已知實數(shù)4、m、16構成一個等比數(shù)列,則圓錐曲線$\frac{x^2}{m}+{y^2}=1$的離心率為( 。
A.3B.$\frac{{\sqrt{14}}}{4}$C.$\sqrt{3}$或 $\frac{{\sqrt{14}}}{4}$D.$\frac{{\sqrt{14}}}{4}$或3

分析 由4,m,16構成一個等比數(shù)列,得到m=±8.當m=8時,圓錐曲線是橢圓;當m=-8時,圓錐曲線是雙曲線,由此入手能求出離心率.

解答 解:∵4,m,16構成一個等比數(shù)列,
∴m=±8.
當m=8時,圓錐曲線$\frac{x^2}{m}+{y^2}=1$是橢圓,a=2$\sqrt{2}$,b=1,c=$\sqrt{7}$,
它的離心率是$\frac{\sqrt{7}}{2\sqrt{2}}$=$\frac{\sqrt{14}}{4}$;
當m=-8時,圓錐曲線$\frac{x^2}{m}+{y^2}=1$是雙曲線,a=1,b=2$\sqrt{3}$,c=3,
它的離心率是3.
故選:D.

點評 本題考查圓錐曲線的離心率的求法,解題時要注意等比數(shù)列的性質的合理運用,注意分類討論思想的靈活運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖,在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AA1=2,AC=$\sqrt{2}$,過BC的中點D作平面ACB1的垂線,交平面ACC1A1于E,則BE與平面ABB1A1所成角的正切值為( 。
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{10}$C.$\frac{{\sqrt{10}}}{10}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.某幾何體的三視圖如圖所示(圖中網(wǎng)格的邊長為1個單位),其中俯視圖為扇形,則該幾何體的體積為( 。
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.$\frac{14π}{3}$D.$\frac{16π}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設函數(shù)f(x)=3x+2x-4,函數(shù)g(x)=log2x+2x2-5,若實數(shù)m,n分別是函數(shù)f(x),g(x)的零點,則( 。
A.g(m)<0<f(n)B.f(n)<0<g(m)C.0<g(m)<f(n)D.f(n)<g(m)<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.某程序流程圖如圖所示,依次輸入函數(shù)$f(x)=sin(x-\frac{π}{6})$,$f(x)=\frac{1}{2}sin(2x+\frac{π}{6})$,f(x)=tanx,$f(x)=cos(2x-\frac{π}{6})$,執(zhí)行該程序,輸出的數(shù)值p=$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在直角坐標系中,以原點為極點,x軸的正半軸為極軸,建立極坐標系,兩坐標系中取相同的單位長度,已知曲線C的方程為${ρ^2}=\frac{3}{{1+2{{sin}^2}θ}}$,點$A(2\sqrt{3},\frac{π}{6})$.
(1)求曲線C的直角坐標方程和點A的直角坐標;
(2)設B為曲線C上一動點,以AB為對角線的矩形BEAF的一邊平行于極軸,求矩形BEAF周長的最小值及此時點B的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.等比數(shù)列{an}的首項a1>0,公比為q(|q|<1),滿足a2+a3+…+an+…≤$\frac{{a}_{1}}{2}$,則公比q的取值范圍是(-1,0)∪(0,$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若曲線y=f(x)在點(x0,f(x0))處的切線方程為3x-y+1=0,則( 。
A.f′(x0)<0B.f′(x0)>0C.f′(x0)=0D.f′(x0)不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)f(x)=$\left\{\begin{array}{l}{4-x,}&{x≤0}\\{\sqrt{4-{x}^{2},}}&{0<x≤2}\end{array}\right.$,則${∫}_{-2}^{2}$f(x)dx的值為π+10.

查看答案和解析>>

同步練習冊答案