【題目】如圖,橢圓的左、右頂點分別為A、B,雙曲線以A、B為頂點,焦距為,點P是上在第一象限內的動點,直線AP與橢圓相交于另一點Q,線段AQ的中點為M,記直線AP的斜率為為坐標原點.
(1)求雙曲線的方程;
(2)求點M的縱坐標的取值范圍;
(3)是否存在定直線使得直線BP與直線OM關于直線對稱?若存在,求直線的方程;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】已知函數的值域是,有下列結論:①當時,; ②當時,;③當時,; ④當時,.其中結論正確的所有的序號是( ).
A.①②B.③④C.②③D.②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,點在橢圓上,焦點為,圓O的直徑為.
(1)求橢圓C及圓O的標準方程;
(2)設直線l與圓O相切于第一象限內的點P,且直線l與橢圓C交于兩點.記 的面積為,證明:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國已進入新時代中國特色社會主義時期,人民生活水平不斷提高.某市隨機統計了城區(qū)若干戶市民十月人均生活支出比九月人均生活支出增加量(記為P元)的情況,并根據統計數據制成如圖頻率分布直方圖.
(1)根據頻率分布直方圖估算P的平均值;
(2)若該市城區(qū)有4戶市民十月人均生活支出比九月人均生活支出分別增加了42元,50元,52元,60元,從這4戶中隨機抽取2戶,求這2戶P值的和超過100元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某條公共汽車線路收支差額與乘客量的函數關系如下圖所示(收支差額=車票收入-支出費用),由于目前本條線路虧損,公司有關人員提出了兩條建議:建議(1)不改變車票價格,減少支出費用;建議(2)不改變支出費用,提高車票價格.下面給出的四個圖形中,實線和虛線分別表示目前和建議后的函數關系,則( )
A.①反映建議(2),③反映建議(1)B.①反映建議(1),③反映建議(2)
C.②反映建議(1),④反映建議(2)D.④反映建議(1),②反映建議(2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列的前項和為且滿足,(為常數,).
(1)求;
(2)若數列是等比數列,求實數的值;
(3)是否存在實數,使得數列滿足:可以從中取出無限多項并按原來的先后次序排成一個等差數列?若存在,求出所有滿足條件的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com