設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,若a+c=1+
3
,b=1,sinC=
3
sinA
(1)求角B;
(2)設(shè)f(x)=2sin(2x+B)+4cos2x求函數(shù)y=f(x)在區(qū)間[0,
π
2
]的值域.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,正弦定理
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)利用正弦定理,可求a,c,利用余弦定理,可求B;
(2)先化簡(jiǎn)函數(shù),再利用三角函數(shù)的性質(zhì),即可求解.
解答: 解:(1)∵sinC=
3
sinA,
∴由正弦定理可得c=
3
a,
∵a+c=1+
3

∴a=1,c=
3
,
∵b=1,
∴由余弦定理可得cosB=
a2+c2-b2
2ac
=
1+3-1
2•1•
3
=
3
2
,
∵0<B<π,
∴B=
π
6
;
(2)f(x)=2sin(2x+B)+4cos2x=2sin(2x+
π
6
)+4cos2x=
3
sin2x+3cos2x+2=2
3
sin(2x+
π
3
)+2.
∵x∈[0,
π
2
],∴2x+
π
3
∈[
π
3
,
3
],
∴sin(2x+
π
3
)∈[-
3
,1],
∴2
3
sin(2x+
π
3
)+2∈[-4,2
3
+2].
點(diǎn)評(píng):本題考查正弦定理、余弦定理的運(yùn)用,考查三角函數(shù)的化簡(jiǎn),考查學(xué)生的計(jì)算能力,正確化簡(jiǎn)函數(shù)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

兩人約定在19:30至20:30之間相見,并且先到者必須等遲到者20分鐘方可離去,如果兩人出發(fā)是各自獨(dú)立的,在19:30至20:30各時(shí)刻相見的可能性是相等的,那么兩人在約定時(shí)間內(nèi)相見的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x||x|<3},B={x|x-2≤0},則A∪B等(  )
A、(-∞,3]
B、(-∞,3)
C、[2,3)
D、(-3,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

開灤二中的學(xué)生王丫丫同學(xué)在設(shè)計(jì)計(jì)算函數(shù)f(x)=
sin2(3π-x)
sin(π-x)+cos(π+x)
+
cos(x-2π)
1+tan(π-x)
的值的程序時(shí),發(fā)現(xiàn)當(dāng)sinx和cosx滿足方程2y2-(
2
+1)y+k=0時(shí),無論輸入任意實(shí)數(shù)x,f(x)的值都不變,你能說明其中的道理嗎?這個(gè)定值是多少?你還能求出k的值嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)+cos2x+a(a∈R,a為常數(shù)).
(1)求函數(shù)的最小正周期;
(2)若x∈[0,  
π
2
]
時(shí),f(x)的最小值為-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某調(diào)查機(jī)構(gòu)就某單位一千多名職工的月收入進(jìn)行調(diào)查,現(xiàn)從中隨機(jī)抽出100名,已知抽到的職工的月收入都在[1500,4500)元之間,根據(jù)調(diào)查結(jié)果得出職工的月收入情況殘缺的頻率分布直方圖如圖所示,則該單位職工的月收入的平均數(shù)大約是
 
元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓
x2
36
+
y2
9
=1的弦被點(diǎn)(4,2)平分,則此弦所在直線的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則它的表面積為( 。
A、2+
1+
5
2
π
B、2+
1+2
5
2
π
C、2+(1+
5
D、2+
2+
5
2
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x2-(k-2)x-8在[5,10]上具有單調(diào)性,則實(shí)數(shù)k的取值范圍是(  )
A、[32,62]
B、(-∞,32]∪[62,+∞)
C、(32,62)
D、(-∞,32)∪(62,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案