【題目】2019年上半年我國多個省市暴發(fā)了“非洲豬瘟”疫情,生豬大量病死,存欄量急劇下降,一時間豬肉價格暴漲,其他肉類價格也跟著大幅上揚,嚴重影響了居民的生活.為了解決這個問題,我國政府一方面鼓勵有條件的企業(yè)和散戶防控疫情,擴大生產(chǎn);另一方面積極向多個國家開放豬肉進口,擴大肉源,確保市場供給穩(wěn)定.某大型生豬生產(chǎn)企業(yè)分析當前市場形勢,決定響應(yīng)政府號召,擴大生產(chǎn)決策層調(diào)閱了該企業(yè)過去生產(chǎn)相關(guān)數(shù)據(jù),就“一天中一頭豬的平均成本與生豬存欄數(shù)量之間的關(guān)系”進行研究.現(xiàn)相關(guān)數(shù)據(jù)統(tǒng)計如下表:
生豬存欄數(shù)量(千頭) | 2 | 3 | 4 | 5 | 8 |
頭豬每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
(1)研究員甲根據(jù)以上數(shù)據(jù)認為與具有線性回歸關(guān)系,請幫他求出關(guān)于的線.性回歸方程(保留小數(shù)點后兩位有效數(shù)字)
(2)研究員乙根據(jù)以上數(shù)據(jù)得出與的回歸模型:.為了評價兩種模型的擬合效果,請完成以下任務(wù):
①完成下表(計算結(jié)果精確到0.01元)(備注:稱為相應(yīng)于點的殘差);
生豬存欄數(shù)量(千頭) | 2 | 3 | 4 | 5 | 8 | |
頭豬每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計值 | |||||
殘差 | ||||||
模型乙 | 估計值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
殘差 | 0 | 0 | 0 | 0.14 | 0.1 |
②分別計算模型甲與模型乙的殘差平方和及,并通過比較的大小,判斷哪個模型擬合效果更好.
(3)根據(jù)市場調(diào)查,生豬存欄數(shù)量達到1萬頭時,飼養(yǎng)一頭豬每一天的平均收入為7.5元;生豬存欄數(shù)量達到1.2萬頭時,飼養(yǎng)一頭豬每一天的平均收入為7.2元若按(2)中擬合效果較好的模型計算一天中一頭豬的平均成本,問該生豬存欄數(shù)量選擇1萬頭還是1.2萬頭能獲得更多利潤?請說明理由.(利潤=收入-成本)
參考公式:.
參考數(shù)據(jù):.
【答案】(1); (2)模型的擬合效果更好; (3)選擇生豬存欄數(shù)量1.2萬頭能獲得更多利潤.
【解析】
(1)利用公式直接計算得到答案.
(2)計算得到,得到答案.
(3)根據(jù)模型分別計算利潤,比較大小得到答案.
(1)由題知:,,
,故.
(2)①經(jīng)計算,可得下表:
生豬存欄數(shù)量(千頭) | 2 | 3 | 4 | 5 | 8 | |
頭豬每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估計值 | 2.80 | 2.55 | 2.30 | 2.05 | 1.30 |
殘差 | 0.40 | 0.20 | ||||
模型乙 | 估計值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
殘差 | 0 | 0 | 0 | 0.14 | 0.1 |
,
因為,故模型的擬合效果更好.
(3)若生豬存欄數(shù)量達到1萬頭,由(2)模型乙可知,每頭豬的成本為元,
這樣一天獲得的總利潤為(元);
若生豬存欄數(shù)量達到1.2萬頭,由(2)模型乙可知,每頭豬的成本為元,
這樣一天獲得的總利潤為(元),
因為,所以選擇生豬存欄數(shù)量1.2萬頭能獲得更多利潤.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)國家號召,促進垃圾分類,某校組織了高三年級學(xué)生參與了“垃圾分類,從我做起”的知識問卷作答隨機抽出男女各20名同學(xué)的問卷進行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.
(Ⅰ)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認為“性別”與“問卷結(jié)果”有關(guān)?
男 | 女 | 總計 | |
合格 | |||
不合格 | |||
總計 |
(Ⅱ)從上述樣本中,成績在60分以下(不含60分)的男女學(xué)生問卷中任意選2個,記來自男生的個數(shù)為,求的分布列及數(shù)學(xué)期望.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,若橢圓經(jīng)過點,且△PF1F2的面積為2.
(1)求橢圓的標準方程;
(2)設(shè)斜率為1的直線與以原點為圓心,半徑為的圓交于A,B兩點,與橢圓C交于C,D兩點,且(),當取得最小值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上一點到其焦點下的距離為10.
(1)求拋物線C的方程;
(2)設(shè)過焦點F的的直線與拋物線C交于兩點,且拋物線在兩點處的切線分別交x軸于兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為,點在橢圓上,且點到點的最大距離為,點到點的最小距離為.
(1)求橢圓的標準方程;
(2)若直線交橢圓于、兩點,坐標原點到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】1970年4月24日,我國發(fā)射了自己的第一顆人造地球衛(wèi)星“東方紅一號”,從此我國開啟了人造衛(wèi)星的新篇章,人造地球衛(wèi)星繞地球運行遵循開普勒行星運動定律:衛(wèi)星在以地球為焦點的橢圓軌道上繞地球運行時,其運行速度是變化的,速度的變化服從面積守恒規(guī)律,即衛(wèi)星的向徑(衛(wèi)星與地球的連線)在相同的時間內(nèi)掃過的面積相等.設(shè)橢圓的長軸長、焦距分別為,,下列結(jié)論不正確的是( )
A.衛(wèi)星向徑的最小值為
B.衛(wèi)星向徑的最大值為
C.衛(wèi)星向徑的最小值與最大值的比值越小,橢圓軌道越扁
D.衛(wèi)星運行速度在近地點時最小,在遠地點時最大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為 (φ為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標系中,曲線C2是圓心為(2,),半徑為1的圓.
(1)求曲線C1的普通方程和C2的直角坐標方程;
(2)設(shè)M為曲線C1上的點,N為曲線C2上的點,求|MN|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若是函數(shù)的極值點,求的極小值;
(2)若對任意的實數(shù)a,函數(shù)在上總有零點,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲、乙兩種不同規(guī)格的產(chǎn)品,其質(zhì)量按測試指標分數(shù)進行劃分,其中分數(shù)不小于分的為合格品,否則為次品.現(xiàn)隨機抽取兩種產(chǎn)品各件進行檢測,其結(jié)果如下:
測試指數(shù)分數(shù) | |||||
甲產(chǎn)品 | |||||
乙產(chǎn)品 |
(1)根據(jù)以上數(shù)據(jù),完成下邊的列聯(lián)表,并判斷是否有的有把握認為兩種產(chǎn)品的質(zhì)量有明顯差異?
甲產(chǎn)品 | 乙產(chǎn)品 | 合計 | |
合格品 | |||
次品 |
(2)已知生產(chǎn)件甲產(chǎn)品,若為合格品,則可盈利元,若為次品,則虧損元;生產(chǎn)件乙產(chǎn)品,若為合格品,則可盈利元,若為次品,則虧損元.記為生產(chǎn)件甲產(chǎn)品和件乙產(chǎn)品所得的總利潤,求隨機變量的分布列和數(shù)學(xué)期望(將產(chǎn)品的合格率作為抽檢一件這種產(chǎn)品為合格品的概率)
參考公式:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com