11.函數(shù)y=ln(x+1)的定義域是(-1,+∞).

分析 由對數(shù)式的真數(shù)大于0得答案.

解答 解:由x+1>0,得x>-1.
∴函數(shù)y=ln(x+1)的定義域是(-1,+∞).
故答案為:(-1,+∞).

點評 本題考查函數(shù)的定義域及其求法,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知α∈($\frac{π}{2}$,π),且cosα=-$\frac{5}{13}$,則$\frac{tan(α+\frac{π}{2})}{cos(α+π)}$=( 。
A.$\frac{12}{13}$B.-$\frac{12}{13}$C.$\frac{13}{12}$D.-$\frac{13}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設數(shù)列{an}的前n項和為Sn,若S2=7,an+1=2Sn+1,n∈N*,則S5=202.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知正數(shù)a,b滿足$\frac{1}{a}$+$\frac{9}$=$\sqrt{ab}$-5,則ab的最小值為36.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知集合M={2,3,5},集合N={3,4,5},則M∪N={2,3,4,5}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{2x+1}{x+1}$.
(1)證明函數(shù)f(x)在(-1,+∞)上為單調遞增函數(shù);
(2)若x∈[0,2],求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知sinα=$\frac{4}{9}\sqrt{2}$,且α為鈍角,則cos$\frac{α}{2}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設向量$\overrightarrow{a}$=(-1,1,2),$\overrightarrow$=(2,1,3),則向量$\overrightarrow{a}$,$\overrightarrow$的夾角的余弦值為( 。
A.$-\frac{{2\sqrt{21}}}{21}$B.$-\frac{{5\sqrt{21}}}{42}$C.$\frac{{2\sqrt{21}}}{21}$D.$\frac{{5\sqrt{21}}}{42}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)=loga(x2-2ax)(a>0且a≠1)滿足對任意的x1,x2∈[3,4],且x1≠x2時,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0成立,則實數(shù)a的取值范圍是(1,$\frac{3}{2}$).

查看答案和解析>>

同步練習冊答案