【題目】正方體的棱長為, 為的中點, 為線段的動點,過的平面截該正方體所得的截面記為,則下列命題正確的序號是_________.
①當時, 的面積為;
②當時, 為六邊形;
③當時, 與的交點滿足;
④當時, 為等腰梯形;
⑤當時, 為四邊形.
【答案】①③④⑤
【解析】如圖,當時,即Q為CC1中點,此時可得PQ∥AD1,AP=QD1=,故可得截面APQD1為等腰梯形,故④正確;
由上圖當點Q向C移動時,滿足,只需在DD1上取點M滿足AM∥PQ,即可得截面為四邊形APQM,故⑤正確;
③當CQ=時,如圖,
延長DD1至N,使D1N=,連接AN交A1D1于S,連接NQ交C1D1于R,連接SR,可證AN∥PQ,由△NRD1∽△QRC1,可得C1R:D1R=C1Q:D1N=1:2,故可得C1R=,故正確;
②由③可知當時,只需點Q上移即可,此時的截面形狀仍然上圖所示的APQRS,顯然為五邊形,故錯誤;
①當CQ=1時,Q與C1重合,取A1D1的中點F,連接AF,可證PC1∥AF,且PC1=AF,可知截面為APC1F為菱形,故其面積為,故正確.
故答案為:①③④⑤.
科目:高中數(shù)學 來源: 題型:
【題目】簡陽羊肉湯已入選成都市級非遺項目,成為簡陽的名片。當初向各地作了廣告推廣,同時廣告對銷售收益也有影響。在若干地區(qū)各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據丟失,但可以確定橫軸是從0開始計數(shù)的.
(Ⅰ)根據頻率分布直方圖,計算圖中各小長方形的寬度;
(Ⅱ)根據頻率分布直方圖,估計投入4萬元廣告費用之后,并將各地銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(Ⅲ)按照類似的研究方法,測得另外一些數(shù)據,并整理得到下表:
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:百萬元) | 2 | 3 | 2 | 7 |
表中的數(shù)據顯示,與之間存在線性相關關系,請將(Ⅱ)的結果填入空白欄,并計算關于的回歸方程.回歸直線的斜率和截距的最小二乘估計公式分別為 , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|ax+1|+|2x﹣1|(a∈R).
(1)當a=1時,求不等式f(x)≥2的解集;
(2)若f(x)≤2x在x∈[,1]時恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下關于命題的說法正確的有(選擇所有正確命題的序號).
(1)“若,則函數(shù)在其定義域內是減函數(shù)”是真命題;
(2)命題“若,則”的否命題是“若,則”;
(3)命題“若都是偶函數(shù),則也是偶數(shù)”的逆命題為真命題;
(4)命題“若,則”與命題“若,則”等價.
A. (1)(3) B. (2)(3) C. (2)(4) D. (3)(4)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)如今,“網購”一詞不再新鮮,越來越多的人已經接受并喜歡了這種購物方式,但隨之也出現(xiàn)了商品質量不能保證與信譽不好等問題,因此,相關管理部門制定了針對商品質量與服務的評價體系,現(xiàn)從評價系統(tǒng)中選出成功交易200例,并對其評價進行統(tǒng)計:對商品的好評率為0.6,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為80次.
(1)依據題中的數(shù)據完成下表,并通過計算說明,能否有99.9%的把握認為“商品好評與服務好評”有關;
(2)若將頻率視為概率,某人在該購物平臺上進行了5次購物,設對商品和服務全好評的次數(shù)為隨機變量,求的分布列(概率用算式表示)、數(shù)學期望和方差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,則log (a5+a7+a9)的值是( )
A.﹣
B.﹣5
C.5
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的圓心在直線上,且與直線相切于點.
(1)求圓方程;
(2)是否存在過點的直線與圓交于兩點,且的面積是(為坐標原點),若存在,求出直線的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ()的焦距為4,左、右焦點分別為、,且與拋物線: 的交點所在的直線經過.
(Ⅰ)求橢圓的方程;
(Ⅱ)分別過、作平行直線、,若直線與交于, 兩點,與拋物線無公共點,直線與交于, 兩點,其中點, 在軸上方,求四邊形的面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com