在△ABC中,若A(-1,2,3),B(2,-2,3),C(1,5,3),則AB邊上的中線的長(zhǎng)度為
 
考點(diǎn):空間兩點(diǎn)間的距離公式
專題:空間位置關(guān)系與距離
分析:求出AB的中點(diǎn)坐標(biāo),利用兩點(diǎn)的距離公式求出結(jié)果即可.
解答: 解:∵A(-1,2,3),B(2,-2,3),
∴AB的中點(diǎn)坐標(biāo)為:(
1
2
,0,3),
∴AB邊上的中線的長(zhǎng)度為:
(-1-
1
2
)
2
+(2-0)2+(3-3)2
=
5
2

故答案為:
5
2
點(diǎn)評(píng):本題考查空間兩點(diǎn)間的距離公式的應(yīng)用,中點(diǎn)坐標(biāo)的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

指出下列集合之間的關(guān)系
(1)集合A={x|x=2k+1,k∈Z},集合B={x|x=4k±1,k∈Z};
(2)集合A={x|x=2m,m∈Z},集合B={x|x=4n±2,n∈Z};
(3)集合A={x|x=
2
,k∈Z},集合B={x|x=kπ或x=kπ+
π
2
,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-(2a-1)lnx+b
(1)若f(x)在x=1處的切線方程為y=x,求實(shí)數(shù)a,b的值;
(2)當(dāng)a>
1
2
時(shí),研究f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|x2<4} N={-1,1,2},則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1,點(diǎn)E、F、G分別是棱B1B、AB和B1C1上的動(dòng)點(diǎn),觀察直線CE與D1F,CE與D1G.
給出下列結(jié)論:
①對(duì)于任意點(diǎn)E,存在點(diǎn)F,使得D1F⊥CE;
②對(duì)于任意點(diǎn)F,存在點(diǎn)E,使得CE⊥D1F;
③對(duì)于任意點(diǎn)E,存在點(diǎn)G,使得D1G⊥CE;
④對(duì)于任意點(diǎn)G,存在點(diǎn)E,使得CE⊥D1G.
其中,所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2px(p>0)的焦點(diǎn)F的直線l與拋物線在第一,四象限分別交于A,B兩點(diǎn)且
|AF|
|BF|
=
1
3
則直線L的傾斜角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果是5,則判斷框內(nèi)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若z1=3-2i,z2=1+ai(a∈R),z1•z2為實(shí)數(shù),則a等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓16x2+25y2=400的長(zhǎng)軸和短軸的長(zhǎng)、離心率分別是(  )
A、10,8,
3
5
B、5,4,
3
5
C、10,8,
4
5
D、5,4,
4
5

查看答案和解析>>

同步練習(xí)冊(cè)答案