分析:(1)由偶函數(shù)的性質(zhì)可解得f(x)=f(-x)=(-x)|-x-m|=-x|x+m|;
(2)化簡(jiǎn)f(x)=
;從而分類(lèi)討論函數(shù)的最值;
(3)當(dāng)m=2時(shí),f(x)=
;f(f(x))=
| x|x-2||x|x-2|-2|,x≥0 | -x|x+2||x|x+2|+2|,x<0 |
| |
,h(x)=f(f(x))-a的零點(diǎn)個(gè)數(shù)即函數(shù)h(x)與函數(shù)y=a的交點(diǎn)的個(gè)數(shù),
作函數(shù)的圖象求解.
解答:
解:(1)當(dāng)x<0時(shí),-x>0;
∵f(x)是定義在R上的偶函數(shù),
∴f(x)=f(-x)=(-x)|-x-m|=-x|x+m|;
(2)f(x)=
;
①當(dāng)0<m≤2時(shí),
當(dāng)0<x<m時(shí),當(dāng)x=
時(shí),f(x)
max=
;
當(dāng)x≥m時(shí),x=2時(shí)有最大值f(2)=2(2-m);
由
-2(2-m)=
<0解得,
0<m<4
-4;
故當(dāng)0<m<4
-4時(shí),f(x)
max=2(2-m);
當(dāng)4
-4≤m≤2時(shí),f(x)
max=
;
當(dāng)2<m<4時(shí),當(dāng)x=
時(shí),f(x)
max=
;
當(dāng)m≥4時(shí),當(dāng)x=2時(shí)有最大值為f(2)=2(m-2);
綜上所述,g(m)=
| 2(2-m),0<m<4-4 | ,4-4≤m<4 | 2(m-2),m≥4 |
| |
;
(3)當(dāng)m=2時(shí),f(x)=
;
f(f(x))=
| x|x-2||x|x-2|-2|,x≥0 | -x|x+2||x|x+2|+2|,x<0 |
| |
,
h(x)=f(f(x))-a的零點(diǎn)個(gè)數(shù)即函數(shù)h(x)與函數(shù)y=a的交點(diǎn)的個(gè)數(shù),
作函數(shù)h(x)與函數(shù)y=a的圖象如下,
當(dāng)a=1時(shí),有6個(gè)交點(diǎn),當(dāng)a>1時(shí),有兩個(gè)交點(diǎn),
當(dāng)0<a<1時(shí),有10個(gè)交點(diǎn),
當(dāng)a=0時(shí),有5個(gè)交點(diǎn),
當(dāng)a<0時(shí),沒(méi)有交點(diǎn);
即當(dāng)a=1時(shí),函數(shù)y=h(x)的零點(diǎn)個(gè)數(shù)為6,
當(dāng)a>1時(shí),函數(shù)y=h(x)的零點(diǎn)個(gè)數(shù)為2,
當(dāng)0<a<1時(shí),函數(shù)y=h(x)的零點(diǎn)個(gè)數(shù)為10,
當(dāng)a=0時(shí),函數(shù)y=h(x)的零點(diǎn)個(gè)數(shù)為5,
當(dāng)a<0時(shí),函數(shù)y=h(x)沒(méi)有零點(diǎn).